"""A local gradio app that filters images using FHE.""" import os import shutil import subprocess import time import gradio as gr import numpy import requests from itertools import chain from settings import ( REPO_DIR, SERVER_URL, FHE_KEYS, CLIENT_FILES, SERVER_FILES, DEPLOYMENT_PATH, INITIAL_INPUT_SHAPE, INPUT_INDEXES, START_POSITIONS, ) from development.client_server_interface import MultiInputsFHEModelClient subprocess.Popen(["uvicorn", "server:app"], cwd=REPO_DIR) time.sleep(3) def shorten_bytes_object(bytes_object, limit=500): """Shorten the input bytes object to a given length. Encrypted data is too large for displaying it in the browser using Gradio. This function provides a shorten representation of it. Args: bytes_object (bytes): The input to shorten limit (int): The length to consider. Default to 500. Returns: str: Hexadecimal string shorten representation of the input byte object. """ # Define a shift for better display shift = 100 return bytes_object[shift : limit + shift].hex() def get_client(client_id, client_type): """Get the client API. Args: client_id (int): The client ID to consider. client_type (str): The type of user to consider (either 'user', 'bank' or 'third_party'). Returns: FHEModelClient: The client API. """ key_dir = FHE_KEYS / f"{client_type}_{client_id}" return MultiInputsFHEModelClient(DEPLOYMENT_PATH, key_dir=key_dir) def get_client_file_path(name, client_id, client_type): """Get the correct temporary file path for the client. Args: name (str): The desired file name (either 'evaluation_key' or 'encrypted_inputs'). client_id (int): The client ID to consider. client_type (str): The type of user to consider (either 'user', 'bank' or 'third_party'). Returns: pathlib.Path: The file path. """ return CLIENT_FILES / f"{name}_{client_type}_{client_id}" def clean_temporary_files(n_keys=20): """Clean keys and encrypted images. A maximum of n_keys keys and associated temporary files are allowed to be stored. Once this limit is reached, the oldest files are deleted. Args: n_keys (int): The maximum number of keys and associated files to be stored. Default to 20. """ # Get the oldest key files in the key directory key_dirs = sorted(FHE_KEYS.iterdir(), key=os.path.getmtime) # If more than n_keys keys are found, remove the oldest user_ids = [] if len(key_dirs) > n_keys: n_keys_to_delete = len(key_dirs) - n_keys for key_dir in key_dirs[:n_keys_to_delete]: user_ids.append(key_dir.name) shutil.rmtree(key_dir) # Get all the encrypted objects in the temporary folder client_files = CLIENT_FILES.iterdir() server_files = SERVER_FILES.iterdir() # Delete all files related to the ids whose keys were deleted for file in chain(client_files, server_files): for user_id in user_ids: if user_id in file.name: file.unlink() def keygen(client_id, client_type): """Generate the private key associated to a filter. Args: client_id (int): The client ID to consider. client_type (str): The type of client to consider (either 'user', 'bank' or 'third_party'). """ # Clean temporary files clean_temporary_files() # Retrieve the client instance client = get_client(client_id, client_type) # Generate a private key client.generate_private_and_evaluation_keys(force=True) # Retrieve the serialized evaluation key. In this case, as circuits are fully leveled, this # evaluation key is empty. However, for software reasons, it is still needed for proper FHE # execution evaluation_key = client.get_serialized_evaluation_keys() # Save evaluation_key as bytes in a file as it is too large to pass through regular Gradio # buttons (see https://github.com/gradio-app/gradio/issues/1877) evaluation_key_path = get_client_file_path("evaluation_key", client_id, client_type) with evaluation_key_path.open("wb") as evaluation_key_file: evaluation_key_file.write(evaluation_key) def send_input(client_id, client_type): """Send the encrypted input image as well as the evaluation key to the server. Args: client_id (int): The client ID to consider. client_type (str): The type of client to consider (either 'user', 'bank' or 'third_party'). """ # Get the paths to the evaluation key and encrypted inputs evaluation_key_path = get_client_file_path("evaluation_key", client_id, client_type) encrypted_input_path = get_client_file_path("encrypted_inputs", client_id, client_type) # Define the data and files to post data = { "client_id": client_id, "client_type": client_type, } files = [ ("files", open(encrypted_input_path, "rb")), ("files", open(evaluation_key_path, "rb")), ] # Send the encrypted input image and evaluation key to the server url = SERVER_URL + "send_input" with requests.post( url=url, data=data, files=files, ) as response: return response.ok def keygen_encrypt_send(inputs, client_type): """Encrypt the given inputs for a specific client. Args: inputs (numpy.ndarray): The inputs to encrypt. client_type (str): The type of client to consider (either 'user', 'bank' or 'third_party'). Returns: """ # Create an ID for the current client to consider client_id = numpy.random.randint(0, 2**32) keygen(client_id, client_type) # Retrieve the client instance client = get_client(client_id, client_type) # TODO : pre-process the data first # Quantize, encrypt and serialize the inputs encrypted_inputs = client.quantize_encrypt_serialize_multi_inputs( inputs, input_index=INPUT_INDEXES[client_type], initial_input_shape=INITIAL_INPUT_SHAPE, start_position=START_POSITIONS[client_type], ) # Save encrypted_inputs to bytes in a file, since too large to pass through regular Gradio # buttons, https://github.com/gradio-app/gradio/issues/1877 encrypted_inputs_path = get_client_file_path("encrypted_inputs", client_id, client_type) with encrypted_inputs_path.open("wb") as encrypted_inputs_file: encrypted_inputs_file.write(encrypted_inputs) # Create a truncated version of the encrypted image for display encrypted_inputs_short = shorten_bytes_object(encrypted_inputs) send_input(client_id, client_type) # TODO: also return private key representation if possible return encrypted_inputs_short def run_fhe(client_id): """Run the model on the encrypted inputs previously sent using FHE. Args: client_id (int): The client ID to consider. """ # TODO : add a warning for users to send all client types' inputs data = { "client_id": client_id, } # Trigger the FHE execution on the encrypted inputs previously sent url = SERVER_URL + "run_fhe" with requests.post( url=url, data=data, ) as response: if response.ok: return response.json() else: raise gr.Error("Please wait for the inputs to be sent to the server.") def get_output(client_id): """Retrieve the encrypted output. Args: client_id (int): The client ID to consider. Returns: output_encrypted_representation (numpy.ndarray): A representation of the encrypted output. """ data = { "client_id": client_id, } # Retrieve the encrypted output image url = SERVER_URL + "get_output" with requests.post( url=url, data=data, ) as response: if response.ok: encrypted_output = response.content # Save the encrypted output to bytes in a file as it is too large to pass through regular # Gradio buttons (see https://github.com/gradio-app/gradio/issues/1877) # TODO : check if output to user is relevant encrypted_output_path = get_client_file_path("encrypted_output", client_id, "user") with encrypted_output_path.open("wb") as encrypted_output_file: encrypted_output_file.write(encrypted_output) # TODO # Decrypt the output using a different (wrong) key for display # output_encrypted_representation = decrypt_output_with_wrong_key(encrypted_output, client_type) # return output_encrypted_representation return None else: raise gr.Error("Please wait for the FHE execution to be completed.") def decrypt_output(client_id, client_type): """Decrypt the result. Args: client_id (int): The client ID to consider. client_type (str): The type of client to consider (either 'user', 'bank' or 'third_party'). Returns: output(numpy.ndarray): The decrypted output """ # Get the encrypted output path encrypted_output_path = get_client_file_path("encrypted_output", client_id, client_type) if not encrypted_output_path.is_file(): raise gr.Error("Please run the FHE execution first.") # Load the encrypted output as bytes with encrypted_output_path.open("rb") as encrypted_output_file: encrypted_output_proba = encrypted_output_file.read() # Retrieve the client API client = get_client(client_id, client_type) # Deserialize, decrypt and post-process the encrypted output output_proba = client.deserialize_decrypt_post_process(encrypted_output_proba) # Determine the predicted class output = numpy.argmax(output_proba, axis=1) return output demo = gr.Blocks() print("Starting the demo...") with demo: gr.Markdown( """