first commit
Browse files- .gitignore +2 -0
- app.py +52 -58
- favicon.ico +0 -0
- nameder.py +62 -0
- resources.py +41 -0
- speech2text.py +63 -0
- translation.py +26 -0
.gitignore
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
**venv
|
2 |
+
main.py
|
app.py
CHANGED
@@ -1,63 +1,57 @@
|
|
1 |
import gradio as gr
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
)
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
""
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
value=0.95,
|
55 |
-
step=0.05,
|
56 |
-
label="Top-p (nucleus sampling)",
|
57 |
-
),
|
58 |
-
],
|
59 |
)
|
60 |
-
|
61 |
|
62 |
if __name__ == "__main__":
|
63 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
import json
|
3 |
+
from nameder import init_model_ner, get_entity_results
|
4 |
+
from speech2text import init_model_trans, transcribe
|
5 |
+
from translation import translate
|
6 |
+
from resources import NER_Response, NER_Request, entity_labels_sample, set_start, audit_elapsedtime
|
7 |
+
|
8 |
+
|
9 |
+
def translation_to_english(text: str):
|
10 |
+
resultado = translate(text)
|
11 |
+
return resultado
|
12 |
+
|
13 |
+
def transcription(audio: bytes):
|
14 |
+
|
15 |
+
s2t = init_model_trans()
|
16 |
+
return transcribe(audio, s2t)
|
17 |
+
|
18 |
+
def named_entity_recognition(text: str):
|
19 |
+
tokenizer, ner = init_model_ner()
|
20 |
+
# print('NER:',ner)
|
21 |
+
result = get_entity_results(entities_list=entity_labels_sample,
|
22 |
+
model=ner,
|
23 |
+
tokenizer=tokenizer,
|
24 |
+
text=text)
|
25 |
+
print('result:',result,type(result))
|
26 |
+
return result
|
27 |
+
|
28 |
+
def get_lead(audio: bytes):
|
29 |
+
start = set_start()
|
30 |
+
transcribe = transcription(audio)
|
31 |
+
translate = translation_to_english(transcribe)
|
32 |
+
ner = named_entity_recognition(NER_Request(
|
33 |
+
entities=entity_labels_sample,
|
34 |
+
text=translate
|
35 |
+
))
|
36 |
+
audit_elapsedtime("VoiceLead", start)
|
37 |
+
return ner
|
38 |
+
|
39 |
+
audio_input = gr.Microphone(
|
40 |
+
label="Record your audio"
|
41 |
+
)
|
42 |
+
text_output = gr.Textbox(
|
43 |
+
label="Labels",
|
44 |
+
info="",
|
45 |
+
lines=9,
|
46 |
+
value=""
|
47 |
+
)
|
48 |
+
demo = gr.Interface(
|
49 |
+
fn=named_entity_recognition,
|
50 |
+
description= "Get the ",
|
51 |
+
inputs=[audio_input],
|
52 |
+
outputs=[text_output],
|
53 |
+
title="VoiceLead"
|
|
|
|
|
|
|
|
|
|
|
54 |
)
|
|
|
55 |
|
56 |
if __name__ == "__main__":
|
57 |
demo.launch()
|
favicon.ico
ADDED
nameder.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List
|
2 |
+
from resources import set_start, audit_elapsedtime, entities_list_to_dict
|
3 |
+
from transformers import BertTokenizer, BertForTokenClassification
|
4 |
+
import torch
|
5 |
+
|
6 |
+
#Named-Entity Recognition model
|
7 |
+
|
8 |
+
def init_model_ner():
|
9 |
+
print("Initiating NER model...")
|
10 |
+
start = set_start()
|
11 |
+
|
12 |
+
# Load pre-trained tokenizer and model
|
13 |
+
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
|
14 |
+
model = BertForTokenClassification.from_pretrained("dbmdz/bert-large-cased-finetuned-conll03-english")
|
15 |
+
|
16 |
+
audit_elapsedtime(function="Initiating NER model", start=start)
|
17 |
+
return tokenizer, model
|
18 |
+
|
19 |
+
def get_entity_results(tokenizer, model, text: str, entities_list: List[str]): #-> Lead_labels:
|
20 |
+
print("Initiating entity recognition...")
|
21 |
+
start = set_start()
|
22 |
+
tokens = tokenizer.tokenize(tokenizer.decode(tokenizer.encode(text)))
|
23 |
+
labels = entities_list
|
24 |
+
|
25 |
+
# Convert tokens to IDs
|
26 |
+
input_ids = tokenizer.encode(text, return_tensors="pt")
|
27 |
+
|
28 |
+
# Perform NER prediction
|
29 |
+
with torch.no_grad():
|
30 |
+
outputs = model(input_ids)
|
31 |
+
|
32 |
+
# Get the predicted labels
|
33 |
+
predicted_labels = torch.argmax(outputs.logits, dim=2)[0]
|
34 |
+
|
35 |
+
# Map predicted labels to actual entities
|
36 |
+
entities = []
|
37 |
+
current_entity = ""
|
38 |
+
for i, label_id in enumerate(predicted_labels):
|
39 |
+
label = model.config.id2label[label_id.item()]
|
40 |
+
token = tokens[i]
|
41 |
+
if label.startswith('B-'): # Beginning of a new entity
|
42 |
+
if current_entity:
|
43 |
+
entities.append(current_entity.strip())
|
44 |
+
current_entity = token
|
45 |
+
elif label.startswith('I-'): # Inside of an entity
|
46 |
+
current_entity += " " + token
|
47 |
+
else: # Outside of any entity
|
48 |
+
if current_entity:
|
49 |
+
entities.append(current_entity.strip())
|
50 |
+
current_entity = ""
|
51 |
+
|
52 |
+
# Filter out only the entities you are interested in
|
53 |
+
filtered_entities = [entity for entity in entities if entity in labels]
|
54 |
+
# entities_result = model.predict_entities(text, labels)
|
55 |
+
|
56 |
+
# entities_dict = entities_list_to_dict(entities_list)
|
57 |
+
# for entity in entities_result:
|
58 |
+
# print(entity["text"], "=>", entity["label"])
|
59 |
+
# entities_dict[entity["label"]] = entity["text"]
|
60 |
+
|
61 |
+
audit_elapsedtime(function="Retreiving entity labels from text", start=start)
|
62 |
+
return filtered_entities
|
resources.py
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pydantic import BaseModel
|
2 |
+
from typing import Optional
|
3 |
+
from typing import List
|
4 |
+
import time
|
5 |
+
|
6 |
+
class NER_Request (BaseModel):
|
7 |
+
text: str
|
8 |
+
entities: List[str]
|
9 |
+
|
10 |
+
class NER_Response (BaseModel):
|
11 |
+
success: int
|
12 |
+
result: str
|
13 |
+
description: Optional[str] = ""
|
14 |
+
errorCode: Optional[int] = 0
|
15 |
+
errorDescriptin: Optional[str] = ""
|
16 |
+
|
17 |
+
entity_labels_sample = [
|
18 |
+
"team",
|
19 |
+
"developer",
|
20 |
+
"technology",
|
21 |
+
"tool",
|
22 |
+
"amount",
|
23 |
+
"duration",
|
24 |
+
"capacity",
|
25 |
+
"company",
|
26 |
+
"currency"
|
27 |
+
]
|
28 |
+
|
29 |
+
def entities_list_to_dict(entitiesList: List[str]):
|
30 |
+
return {key: 'string' for key in entitiesList}
|
31 |
+
|
32 |
+
def set_start () -> time:
|
33 |
+
return time.time()
|
34 |
+
|
35 |
+
def audit_elapsedtime(function: str, start: time):
|
36 |
+
end = time.time()
|
37 |
+
elapsedtime = end-start
|
38 |
+
print("------------------")
|
39 |
+
print(f"[{function}] Elapsed time: {elapsedtime}")
|
40 |
+
print("------------------")
|
41 |
+
return elapsedtime
|
speech2text.py
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
|
2 |
+
import torch
|
3 |
+
from resources import set_start, audit_elapsedtime
|
4 |
+
|
5 |
+
#Speech to text transcription model
|
6 |
+
|
7 |
+
def init_model_trans ():
|
8 |
+
print("Initiating transcription model...")
|
9 |
+
start = set_start()
|
10 |
+
|
11 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
12 |
+
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
13 |
+
|
14 |
+
model_id = "openai/whisper-large-v3"
|
15 |
+
|
16 |
+
model = AutoModelForSpeechSeq2Seq.from_pretrained(
|
17 |
+
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
|
18 |
+
)
|
19 |
+
model.to(device)
|
20 |
+
|
21 |
+
processor = AutoProcessor.from_pretrained(model_id)
|
22 |
+
|
23 |
+
pipe = pipeline(
|
24 |
+
"automatic-speech-recognition",
|
25 |
+
model=model,
|
26 |
+
tokenizer=processor.tokenizer,
|
27 |
+
feature_extractor=processor.feature_extractor,
|
28 |
+
max_new_tokens=128,
|
29 |
+
chunk_length_s=30,
|
30 |
+
batch_size=16,
|
31 |
+
return_timestamps=True,
|
32 |
+
torch_dtype=torch_dtype,
|
33 |
+
device=device,
|
34 |
+
)
|
35 |
+
print(f'Init model successful')
|
36 |
+
audit_elapsedtime(function="Init transc model", start=start)
|
37 |
+
return pipe
|
38 |
+
|
39 |
+
def transcribe (audio_sample: bytes, pipe) -> str:
|
40 |
+
print("Initiating transcription...")
|
41 |
+
start = set_start()
|
42 |
+
result = pipe(audio_sample)
|
43 |
+
|
44 |
+
audit_elapsedtime(function="Transcription", start=start)
|
45 |
+
print("transcription result",result)
|
46 |
+
|
47 |
+
#st.write('trancription: ', result["text"])
|
48 |
+
return result["text"]
|
49 |
+
|
50 |
+
# def translate (audio_sample: bytes, pipe) -> str:
|
51 |
+
# print("Initiating Translation...")
|
52 |
+
# start = set_start()
|
53 |
+
# # dataset = load_dataset("distil-whisper/librispeech_long", "clean", split="validation")
|
54 |
+
# # sample = dataset[0]["audio"]
|
55 |
+
|
56 |
+
# #result = pipe(audio_sample)
|
57 |
+
# result = pipe(audio_sample, generate_kwargs={"task": "translate"})
|
58 |
+
|
59 |
+
# audit_elapsedtime(function="Translation", start=start)
|
60 |
+
# print("Translation result",result)
|
61 |
+
|
62 |
+
# #st.write('trancription: ', result["text"])
|
63 |
+
# return result["text"]
|
translation.py
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
|
2 |
+
from resources import set_start, audit_elapsedtime
|
3 |
+
from pydantic import BaseModel
|
4 |
+
|
5 |
+
#def get_model_name(languageCode: str) -> str:
|
6 |
+
# match languageCode:
|
7 |
+
# case "pt":
|
8 |
+
# model_name = "Helsinki-NLP/opus-mt-pt-en"
|
9 |
+
# case _:
|
10 |
+
# model_name
|
11 |
+
#
|
12 |
+
# return model_name
|
13 |
+
|
14 |
+
def translate(text_to_translate: str) -> str:
|
15 |
+
|
16 |
+
start = set_start()
|
17 |
+
print("Initiating translation model...")
|
18 |
+
text_size = len(text_to_translate)*2
|
19 |
+
tokenizer = AutoTokenizer.from_pretrained("unicamp-dl/translation-pt-en-t5")
|
20 |
+
model = AutoModelForSeq2SeqLM.from_pretrained("unicamp-dl/translation-pt-en-t5")
|
21 |
+
pten_pipeline = pipeline('text2text-generation', model=model, tokenizer=tokenizer)
|
22 |
+
translated_text = pten_pipeline(text_to_translate, max_new_tokens= text_size)[0]['generated_text']
|
23 |
+
|
24 |
+
elapsedtime=audit_elapsedtime(function="Finished translation", start=start)
|
25 |
+
print("Translated text:", translated_text)
|
26 |
+
return translated_text
|