from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline import torch from resources import set_start, audit_elapsedtime #Speech to text transcription model def init_model_trans (): print("Initiating transcription model...") start = set_start() device = "cuda:0" if torch.cuda.is_available() else "cpu" torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 model_id = "openai/whisper-large-v3" model = AutoModelForSpeechSeq2Seq.from_pretrained( model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True ) model.to(device) processor = AutoProcessor.from_pretrained(model_id) pipe = pipeline( "automatic-speech-recognition", model=model, tokenizer=processor.tokenizer, feature_extractor=processor.feature_extractor, max_new_tokens=128, chunk_length_s=30, batch_size=16, return_timestamps=True, torch_dtype=torch_dtype, device=device, ) print(f'Init model successful') audit_elapsedtime(function="Init transc model", start=start) return pipe def transcribe (audio_sample: bytes, pipe) -> str: print("Initiating transcription...") start = set_start() result = pipe(audio_sample) audit_elapsedtime(function="Transcription", start=start) print("transcription result",result) #st.write('trancription: ', result["text"]) return result["text"] # def translate (audio_sample: bytes, pipe) -> str: # print("Initiating Translation...") # start = set_start() # # dataset = load_dataset("distil-whisper/librispeech_long", "clean", split="validation") # # sample = dataset[0]["audio"] # #result = pipe(audio_sample) # result = pipe(audio_sample, generate_kwargs={"task": "translate"}) # audit_elapsedtime(function="Translation", start=start) # print("Translation result",result) # #st.write('trancription: ', result["text"]) # return result["text"]