zetavg
add possible missing model configs and update ui
4ac0d6a unverified
raw
history blame
2.98 kB
import os
import sys
import gc
import torch
import transformers
from peft import PeftModel
from transformers import GenerationConfig, LlamaForCausalLM, LlamaTokenizer
from .globals import Global
def get_device():
if torch.cuda.is_available():
return "cuda"
else:
return "cpu"
try:
if torch.backends.mps.is_available():
return "mps"
except: # noqa: E722
pass
device = get_device()
def get_base_model():
load_base_model()
return Global.loaded_base_model
def get_model_with_lora(lora_weights: str = "tloen/alpaca-lora-7b"):
Global.model_has_been_used = True
if device == "cuda":
return PeftModel.from_pretrained(
get_base_model(),
lora_weights,
torch_dtype=torch.float16,
device_map={'': 0}, # ? https://github.com/tloen/alpaca-lora/issues/21
)
elif device == "mps":
return PeftModel.from_pretrained(
get_base_model(),
lora_weights,
device_map={"": device},
torch_dtype=torch.float16,
)
else:
return PeftModel.from_pretrained(
get_base_model(),
lora_weights,
device_map={"": device},
)
def get_tokenizer():
load_base_model()
return Global.loaded_tokenizer
def load_base_model():
if Global.ui_dev_mode:
return
if Global.loaded_tokenizer is None:
Global.loaded_tokenizer = LlamaTokenizer.from_pretrained(
Global.base_model
)
if Global.loaded_base_model is None:
if device == "cuda":
Global.loaded_base_model = LlamaForCausalLM.from_pretrained(
Global.base_model,
load_in_8bit=Global.load_8bit,
torch_dtype=torch.float16,
# device_map="auto",
device_map={'': 0}, # ? https://github.com/tloen/alpaca-lora/issues/21
)
elif device == "mps":
Global.loaded_base_model = LlamaForCausalLM.from_pretrained(
Global.base_model,
device_map={"": device},
torch_dtype=torch.float16,
)
else:
model = LlamaForCausalLM.from_pretrained(
base_model, device_map={"": device}, low_cpu_mem_usage=True
)
# unwind broken decapoda-research config
model.config.pad_token_id = tokenizer.pad_token_id = 0 # unk
model.config.bos_token_id = 1
model.config.eos_token_id = 2
def unload_models():
del Global.loaded_base_model
Global.loaded_base_model = None
del Global.loaded_tokenizer
Global.loaded_tokenizer = None
gc.collect()
# if not shared.args.cpu: # will not be running on CPUs anyway
with torch.no_grad():
torch.cuda.empty_cache()
Global.model_has_been_used = False
def unload_models_if_already_used():
if Global.model_has_been_used:
unload_models()