Spaces:
Runtime error
Runtime error
import os | |
import sys | |
import gc | |
import torch | |
from transformers import LlamaForCausalLM, LlamaTokenizer | |
from peft import PeftModel | |
from .globals import Global | |
def get_device(): | |
if torch.cuda.is_available(): | |
return "cuda" | |
else: | |
return "cpu" | |
try: | |
if torch.backends.mps.is_available(): | |
return "mps" | |
except: # noqa: E722 | |
pass | |
def get_new_base_model(base_model_name): | |
if Global.ui_dev_mode: | |
return | |
if Global.new_base_model_that_is_ready_to_be_used: | |
if Global.name_of_new_base_model_that_is_ready_to_be_used == base_model_name: | |
model = Global.new_base_model_that_is_ready_to_be_used | |
Global.new_base_model_that_is_ready_to_be_used = None | |
Global.name_of_new_base_model_that_is_ready_to_be_used = None | |
return model | |
else: | |
Global.new_base_model_that_is_ready_to_be_used = None | |
Global.name_of_new_base_model_that_is_ready_to_be_used = None | |
clear_cache() | |
device = get_device() | |
if device == "cuda": | |
model = LlamaForCausalLM.from_pretrained( | |
base_model_name, | |
load_in_8bit=Global.load_8bit, | |
torch_dtype=torch.float16, | |
# device_map="auto", | |
# ? https://github.com/tloen/alpaca-lora/issues/21 | |
device_map={'': 0}, | |
) | |
elif device == "mps": | |
model = LlamaForCausalLM.from_pretrained( | |
base_model_name, | |
device_map={"": device}, | |
torch_dtype=torch.float16, | |
) | |
else: | |
model = LlamaForCausalLM.from_pretrained( | |
base_model_name, device_map={"": device}, low_cpu_mem_usage=True | |
) | |
model.config.pad_token_id = get_tokenizer(base_model_name).pad_token_id = 0 | |
model.config.bos_token_id = 1 | |
model.config.eos_token_id = 2 | |
return model | |
def get_tokenizer(base_model_name): | |
if Global.ui_dev_mode: | |
return | |
loaded_tokenizer = Global.loaded_tokenizers.get(base_model_name) | |
if loaded_tokenizer: | |
return loaded_tokenizer | |
tokenizer = LlamaTokenizer.from_pretrained(base_model_name) | |
Global.loaded_tokenizers.set(base_model_name, tokenizer) | |
return tokenizer | |
def get_model( | |
base_model_name, | |
peft_model_name=None): | |
if Global.ui_dev_mode: | |
return | |
if peft_model_name == "None": | |
peft_model_name = None | |
model_key = base_model_name | |
if peft_model_name: | |
model_key = f"{base_model_name}//{peft_model_name}" | |
loaded_model = Global.loaded_models.get(model_key) | |
if loaded_model: | |
return loaded_model | |
peft_model_name_or_path = peft_model_name | |
if peft_model_name: | |
lora_models_directory_path = os.path.join(Global.data_dir, "lora_models") | |
possible_lora_model_path = os.path.join( | |
lora_models_directory_path, peft_model_name) | |
if os.path.isdir(possible_lora_model_path): | |
peft_model_name_or_path = possible_lora_model_path | |
Global.loaded_models.prepare_to_set() | |
clear_cache() | |
model = get_new_base_model(base_model_name) | |
if peft_model_name: | |
device = get_device() | |
if device == "cuda": | |
model = PeftModel.from_pretrained( | |
model, | |
peft_model_name_or_path, | |
torch_dtype=torch.float16, | |
# ? https://github.com/tloen/alpaca-lora/issues/21 | |
device_map={'': 0}, | |
) | |
elif device == "mps": | |
model = PeftModel.from_pretrained( | |
model, | |
peft_model_name_or_path, | |
device_map={"": device}, | |
torch_dtype=torch.float16, | |
) | |
else: | |
model = PeftModel.from_pretrained( | |
model, | |
peft_model_name_or_path, | |
device_map={"": device}, | |
) | |
model.config.pad_token_id = get_tokenizer(base_model_name).pad_token_id = 0 | |
model.config.bos_token_id = 1 | |
model.config.eos_token_id = 2 | |
if not Global.load_8bit: | |
model.half() # seems to fix bugs for some users. | |
model.eval() | |
if torch.__version__ >= "2" and sys.platform != "win32": | |
model = torch.compile(model) | |
Global.loaded_models.set(model_key, model) | |
clear_cache() | |
return model | |
def prepare_base_model(base_model_name=Global.default_base_model_name): | |
Global.new_base_model_that_is_ready_to_be_used = get_new_base_model(base_model_name) | |
Global.name_of_new_base_model_that_is_ready_to_be_used = base_model_name | |
def clear_cache(): | |
gc.collect() | |
# if not shared.args.cpu: # will not be running on CPUs anyway | |
with torch.no_grad(): | |
torch.cuda.empty_cache() | |
def unload_models(): | |
Global.loaded_models.clear() | |
Global.loaded_tokenizers.clear() | |
clear_cache() | |