zetavg commited on
Commit
bbdf699
β€’
1 Parent(s): faa8dd3

rename project

Browse files
LLaMA_LoRA.ipynb CHANGED
@@ -27,13 +27,13 @@
27
  "colab_type": "text"
28
  },
29
  "source": [
30
- "<a href=\"https://colab.research.google.com/github/zetavg/LLaMA-LoRA/blob/main/LLaMA_LoRA.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
31
  ]
32
  },
33
  {
34
  "cell_type": "markdown",
35
  "source": [
36
- "# πŸ¦™πŸŽ›οΈ LLaMA-LoRA\n",
37
  "\n",
38
  "TL;DR: **Runtime > Run All** (`⌘/Ctrl+F9`). Takes about 5 minutes to start. You will be promped to authorize Google Drive access."
39
  ],
@@ -72,9 +72,9 @@
72
  "# @title Git/Project { display-mode: \"form\", run: \"auto\" }\n",
73
  "# @markdown Project settings.\n",
74
  "\n",
75
- "# @markdown The URL of the LLaMA-LoRA project<br>&nbsp;&nbsp;(default: `https://github.com/zetavg/llama-lora.git`):\n",
76
- "llama_lora_project_url = \"https://github.com/zetavg/llama-lora.git\" # @param {type:\"string\"}\n",
77
- "# @markdown The branch to use for LLaMA-LoRA project:\n",
78
  "llama_lora_project_branch = \"main\" # @param {type:\"string\"}\n",
79
  "\n",
80
  "# # @markdown Forces the local directory to be updated by the remote branch:\n",
 
27
  "colab_type": "text"
28
  },
29
  "source": [
30
+ "<a href=\"https://colab.research.google.com/github/zetavg/LLaMA-LoRA-Tuner/blob/main/LLaMA_LoRA.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
31
  ]
32
  },
33
  {
34
  "cell_type": "markdown",
35
  "source": [
36
+ "# πŸ¦™πŸŽ›οΈ LLaMA-LoRA Tuner\n",
37
  "\n",
38
  "TL;DR: **Runtime > Run All** (`⌘/Ctrl+F9`). Takes about 5 minutes to start. You will be promped to authorize Google Drive access."
39
  ],
 
72
  "# @title Git/Project { display-mode: \"form\", run: \"auto\" }\n",
73
  "# @markdown Project settings.\n",
74
  "\n",
75
+ "# @markdown The URL of the LLaMA-LoRA-Tuner project<br>&nbsp;&nbsp;(default: `https://github.com/zetavg/LLaMA-LoRA-Tuner.git`):\n",
76
+ "llama_lora_project_url = \"https://github.com/zetavg/LLaMA-LoRA-Tuner.git\" # @param {type:\"string\"}\n",
77
+ "# @markdown The branch to use for LLaMA-LoRA-Tuner project:\n",
78
  "llama_lora_project_branch = \"main\" # @param {type:\"string\"}\n",
79
  "\n",
80
  "# # @markdown Forces the local directory to be updated by the remote branch:\n",
README.md CHANGED
@@ -1,6 +1,6 @@
1
- # πŸ¦™πŸŽ›οΈ LLaMA-LoRA
2
 
3
- <a href="https://colab.research.google.com/github/zetavg/LLaMA-LoRA/blob/main/LLaMA_LoRA.ipynb" target="_parent"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a>
4
 
5
  Making evaluating and fine-tuning LLaMA models with low-rank adaptation (LoRA) easy.
6
 
@@ -27,7 +27,7 @@ There are various ways to run this app:
27
 
28
  ### Run On Google Colab
29
 
30
- Open [this Colab Notebook](https://colab.research.google.com/github/zetavg/LLaMA-LoRA/blob/main/LLaMA_LoRA.ipynb) and select **Runtime > Run All** (`⌘/Ctrl+F9`).
31
 
32
  You will be prompted to authorize Google Drive access, as Google Drive will be used to store your data. See the "Config"/"Google Drive" section for settings and more info.
33
 
@@ -38,7 +38,7 @@ After approximately 5 minutes of running, you will see the public URL in the out
38
  After following the [installation guide of SkyPilot](https://skypilot.readthedocs.io/en/latest/getting-started/installation.html), create a `.yaml` to define a task for running the app:
39
 
40
  ```yaml
41
- # llama-lora-multitool.yaml
42
 
43
  resources:
44
  accelerators: A10:1 # 1x NVIDIA A10 GPU
@@ -49,13 +49,13 @@ file_mounts:
49
  # (to store train datasets trained models)
50
  # See https://skypilot.readthedocs.io/en/latest/reference/storage.html for details.
51
  /data:
52
- name: llama-lora-multitool-data # Make sure this name is unique or you own this bucket. If it does not exists, SkyPilot will try to create a bucket with this name.
53
  store: gcs # Could be either of [s3, gcs]
54
  mode: MOUNT
55
 
56
- # Clone the LLaMA-LoRA repo and install its dependencies.
57
  setup: |
58
- git clone https://github.com/zetavg/LLaMA-LoRA.git llama_lora
59
  cd llama_lora && pip install -r requirements.lock.txt
60
  cd ..
61
  echo 'Dependencies installed.'
@@ -69,7 +69,7 @@ run: |
69
  Then launch a cluster to run the task:
70
 
71
  ```
72
- sky launch -c llama-lora-multitool llama-lora-multitool.yaml
73
  ```
74
 
75
  `-c ...` is an optional flag to specify a cluster name. If not specified, SkyPilot will automatically generate one.
@@ -86,8 +86,8 @@ When you are done, run `sky stop <cluster_name>` to stop the cluster. To termina
86
  <summary>Prepare environment with conda</summary>
87
 
88
  ```bash
89
- conda create -y python=3.8 -n llama-lora-multitool
90
- conda activate llama-lora-multitool
91
  ```
92
  </details>
93
 
 
1
+ # πŸ¦™πŸŽ›οΈ LLaMA-LoRA Tuner
2
 
3
+ <a href="https://colab.research.google.com/github/zetavg/LLaMA-LoRA-Tuner/blob/main/LLaMA_LoRA.ipynb" target="_parent"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a>
4
 
5
  Making evaluating and fine-tuning LLaMA models with low-rank adaptation (LoRA) easy.
6
 
 
27
 
28
  ### Run On Google Colab
29
 
30
+ Open [this Colab Notebook](https://colab.research.google.com/github/zetavg/LLaMA-LoRA-Tuner/blob/main/LLaMA_LoRA.ipynb) and select **Runtime > Run All** (`⌘/Ctrl+F9`).
31
 
32
  You will be prompted to authorize Google Drive access, as Google Drive will be used to store your data. See the "Config"/"Google Drive" section for settings and more info.
33
 
 
38
  After following the [installation guide of SkyPilot](https://skypilot.readthedocs.io/en/latest/getting-started/installation.html), create a `.yaml` to define a task for running the app:
39
 
40
  ```yaml
41
+ # llama-lora-tuner.yaml
42
 
43
  resources:
44
  accelerators: A10:1 # 1x NVIDIA A10 GPU
 
49
  # (to store train datasets trained models)
50
  # See https://skypilot.readthedocs.io/en/latest/reference/storage.html for details.
51
  /data:
52
+ name: llama-lora-tuner-data # Make sure this name is unique or you own this bucket. If it does not exists, SkyPilot will try to create a bucket with this name.
53
  store: gcs # Could be either of [s3, gcs]
54
  mode: MOUNT
55
 
56
+ # Clone the LLaMA-LoRA Tuner repo and install its dependencies.
57
  setup: |
58
+ git clone https://github.com/zetavg/LLaMA-LoRA-Tuner.git llama_lora
59
  cd llama_lora && pip install -r requirements.lock.txt
60
  cd ..
61
  echo 'Dependencies installed.'
 
69
  Then launch a cluster to run the task:
70
 
71
  ```
72
+ sky launch -c llama-lora-tuner llama-lora-tuner.yaml
73
  ```
74
 
75
  `-c ...` is an optional flag to specify a cluster name. If not specified, SkyPilot will automatically generate one.
 
86
  <summary>Prepare environment with conda</summary>
87
 
88
  ```bash
89
+ conda create -y python=3.8 -n llama-lora-tuner
90
+ conda activate llama-lora-tuner
91
  ```
92
  </details>
93
 
llama_lora/globals.py CHANGED
@@ -41,7 +41,7 @@ class Global:
41
  gpu_total_memory = None
42
 
43
  # UI related
44
- ui_title: str = "LLaMA-LoRA"
45
  ui_emoji: str = "πŸ¦™πŸŽ›οΈ"
46
  ui_subtitle: str = "Toolkit for evaluating and fine-tuning LLaMA models with low-rank adaptation (LoRA)."
47
  ui_show_sys_info: bool = True
 
41
  gpu_total_memory = None
42
 
43
  # UI related
44
+ ui_title: str = "LLaMA-LoRA Tuner"
45
  ui_emoji: str = "πŸ¦™πŸŽ›οΈ"
46
  ui_subtitle: str = "Toolkit for evaluating and fine-tuning LLaMA models with low-rank adaptation (LoRA)."
47
  ui_show_sys_info: bool = True
llama_lora/ui/main_page.py CHANGED
@@ -30,7 +30,7 @@ def main_page():
30
  tokenizer_ui()
31
  info = []
32
  if Global.version:
33
- info.append(f"LLaMA-LoRA `{Global.version}`")
34
  info.append(f"Base model: `{Global.base_model}`")
35
  if Global.ui_show_sys_info:
36
  info.append(f"Data dir: `{Global.data_dir}`")
 
30
  tokenizer_ui()
31
  info = []
32
  if Global.version:
33
+ info.append(f"LLaMA-LoRA Tuner `{Global.version}`")
34
  info.append(f"Base model: `{Global.base_model}`")
35
  if Global.ui_show_sys_info:
36
  info.append(f"Data dir: `{Global.data_dir}`")