File size: 8,984 Bytes
88b0dcb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 |
"""
@Date: 2021/07/17
@description:
"""
import os
import logging
from yacs.config import CfgNode as CN
_C = CN()
_C.DEBUG = False
_C.MODE = 'train'
_C.VAL_NAME = 'val'
_C.TAG = 'default'
_C.COMMENT = 'add some comments to help you understand'
_C.SHOW_BAR = True
_C.SAVE_EVAL = False
_C.MODEL = CN()
_C.MODEL.NAME = 'model_name'
_C.MODEL.SAVE_BEST = True
_C.MODEL.SAVE_LAST = True
_C.MODEL.ARGS = []
_C.MODEL.FINE_TUNE = []
# -----------------------------------------------------------------------------
# Training settings
# -----------------------------------------------------------------------------
_C.TRAIN = CN()
_C.TRAIN.SCRATCH = False
_C.TRAIN.START_EPOCH = 0
_C.TRAIN.EPOCHS = 300
_C.TRAIN.DETERMINISTIC = False
_C.TRAIN.SAVE_FREQ = 5
_C.TRAIN.BASE_LR = 5e-4
_C.TRAIN.WARMUP_EPOCHS = 20
_C.TRAIN.WEIGHT_DECAY = 0
_C.TRAIN.WARMUP_LR = 5e-7
_C.TRAIN.MIN_LR = 5e-6
# Clip gradient norm
_C.TRAIN.CLIP_GRAD = 5.0
# Auto resume from latest checkpoint
_C.TRAIN.RESUME_LAST = True
# Gradient accumulation steps
# could be overwritten by command line argument
_C.TRAIN.ACCUMULATION_STEPS = 0
# Whether to use gradient checkpointing to save memory
# could be overwritten by command line argument
_C.TRAIN.USE_CHECKPOINT = False
# 'cpu' or 'cuda:0, 1, 2, 3' or 'cuda'
_C.TRAIN.DEVICE = 'cuda'
# LR scheduler
_C.TRAIN.LR_SCHEDULER = CN()
_C.TRAIN.LR_SCHEDULER.NAME = ''
_C.TRAIN.LR_SCHEDULER.ARGS = []
# Optimizer
_C.TRAIN.OPTIMIZER = CN()
_C.TRAIN.OPTIMIZER.NAME = 'adam'
# Optimizer Epsilon
_C.TRAIN.OPTIMIZER.EPS = 1e-8
# Optimizer Betas
_C.TRAIN.OPTIMIZER.BETAS = (0.9, 0.999)
# SGD momentum
_C.TRAIN.OPTIMIZER.MOMENTUM = 0.9
# Criterion
_C.TRAIN.CRITERION = CN()
# Boundary loss (Horizon-Net)
_C.TRAIN.CRITERION.BOUNDARY = CN()
_C.TRAIN.CRITERION.BOUNDARY.NAME = 'boundary'
_C.TRAIN.CRITERION.BOUNDARY.LOSS = 'BoundaryLoss'
_C.TRAIN.CRITERION.BOUNDARY.WEIGHT = 0.0
_C.TRAIN.CRITERION.BOUNDARY.WEIGHTS = []
_C.TRAIN.CRITERION.BOUNDARY.NEED_ALL = True
# Up and Down depth loss (LED2-Net)
_C.TRAIN.CRITERION.LEDDepth = CN()
_C.TRAIN.CRITERION.LEDDepth.NAME = 'led_depth'
_C.TRAIN.CRITERION.LEDDepth.LOSS = 'LEDLoss'
_C.TRAIN.CRITERION.LEDDepth.WEIGHT = 0.0
_C.TRAIN.CRITERION.LEDDepth.WEIGHTS = []
_C.TRAIN.CRITERION.LEDDepth.NEED_ALL = True
# Depth loss
_C.TRAIN.CRITERION.DEPTH = CN()
_C.TRAIN.CRITERION.DEPTH.NAME = 'depth'
_C.TRAIN.CRITERION.DEPTH.LOSS = 'L1Loss'
_C.TRAIN.CRITERION.DEPTH.WEIGHT = 0.0
_C.TRAIN.CRITERION.DEPTH.WEIGHTS = []
_C.TRAIN.CRITERION.DEPTH.NEED_ALL = False
# Ratio(Room Height) loss
_C.TRAIN.CRITERION.RATIO = CN()
_C.TRAIN.CRITERION.RATIO.NAME = 'ratio'
_C.TRAIN.CRITERION.RATIO.LOSS = 'L1Loss'
_C.TRAIN.CRITERION.RATIO.WEIGHT = 0.0
_C.TRAIN.CRITERION.RATIO.WEIGHTS = []
_C.TRAIN.CRITERION.RATIO.NEED_ALL = False
# Grad(Normal) loss
_C.TRAIN.CRITERION.GRAD = CN()
_C.TRAIN.CRITERION.GRAD.NAME = 'grad'
_C.TRAIN.CRITERION.GRAD.LOSS = 'GradLoss'
_C.TRAIN.CRITERION.GRAD.WEIGHT = 0.0
_C.TRAIN.CRITERION.GRAD.WEIGHTS = [1.0, 1.0]
_C.TRAIN.CRITERION.GRAD.NEED_ALL = True
# Object loss
_C.TRAIN.CRITERION.OBJECT = CN()
_C.TRAIN.CRITERION.OBJECT.NAME = 'object'
_C.TRAIN.CRITERION.OBJECT.LOSS = 'ObjectLoss'
_C.TRAIN.CRITERION.OBJECT.WEIGHT = 0.0
_C.TRAIN.CRITERION.OBJECT.WEIGHTS = []
_C.TRAIN.CRITERION.OBJECT.NEED_ALL = True
# Heatmap loss
_C.TRAIN.CRITERION.CHM = CN()
_C.TRAIN.CRITERION.CHM.NAME = 'corner_heat_map'
_C.TRAIN.CRITERION.CHM.LOSS = 'HeatmapLoss'
_C.TRAIN.CRITERION.CHM.WEIGHT = 0.0
_C.TRAIN.CRITERION.CHM.WEIGHTS = []
_C.TRAIN.CRITERION.CHM.NEED_ALL = False
_C.TRAIN.VIS_MERGE = True
_C.TRAIN.VIS_WEIGHT = 1024
# -----------------------------------------------------------------------------
# Output settings
# -----------------------------------------------------------------------------
_C.CKPT = CN()
_C.CKPT.PYTORCH = './'
_C.CKPT.ROOT = "./checkpoints"
_C.CKPT.DIR = os.path.join(_C.CKPT.ROOT, _C.MODEL.NAME, _C.TAG)
_C.CKPT.RESULT_DIR = os.path.join(_C.CKPT.DIR, 'results', _C.MODE)
_C.LOGGER = CN()
_C.LOGGER.DIR = os.path.join(_C.CKPT.DIR, "logs")
_C.LOGGER.LEVEL = logging.DEBUG
# -----------------------------------------------------------------------------
# Misc
# -----------------------------------------------------------------------------
# Mixed precision opt level, if O0, no amp is used ('O0', 'O1', 'O2'), Please confirm your device support FP16(Half).
# overwritten by command line argument
_C.AMP_OPT_LEVEL = 'O1'
# Path to output folder, overwritten by command line argument
_C.OUTPUT = ''
# Tag of experiment, overwritten by command line argument
_C.TAG = 'default'
# Frequency to save checkpoint
_C.SAVE_FREQ = 1
# Frequency to logging info
_C.PRINT_FREQ = 10
# Fixed random seed
_C.SEED = 0
# Perform evaluation only, overwritten by command line argument
_C.EVAL_MODE = False
# Test throughput only, overwritten by command line argument
_C.THROUGHPUT_MODE = False
# -----------------------------------------------------------------------------
# FIX
# -----------------------------------------------------------------------------
_C.LOCAL_RANK = 0
_C.WORLD_SIZE = 0
# -----------------------------------------------------------------------------
# Data settings
# -----------------------------------------------------------------------------
_C.DATA = CN()
# Sub dataset of pano_s2d3d
_C.DATA.SUBSET = None
# Dataset name
_C.DATA.DATASET = 'mp3d'
# Path to dataset, could be overwritten by command line argument
_C.DATA.DIR = ''
# Max wall number
_C.DATA.WALL_NUM = 0 # all
# Panorama image size
_C.DATA.SHAPE = [512, 1024]
# Really camera height
_C.DATA.CAMERA_HEIGHT = 1.6
# Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.
_C.DATA.PIN_MEMORY = True
# Debug use, fast test performance of model
_C.DATA.FOR_TEST_INDEX = None
# Batch size for a single GPU, could be overwritten by command line argument
_C.DATA.BATCH_SIZE = 8
# Number of data loading threads
_C.DATA.NUM_WORKERS = 8
# Training augment
_C.DATA.AUG = CN()
# Flip the panorama horizontally
_C.DATA.AUG.FLIP = True
# Pano Stretch Data Augmentation by HorizonNet
_C.DATA.AUG.STRETCH = True
# Rotate the panorama horizontally
_C.DATA.AUG.ROTATE = True
# Gamma adjusting
_C.DATA.AUG.GAMMA = True
_C.DATA.KEYS = []
_C.EVAL = CN()
_C.EVAL.POST_PROCESSING = None
_C.EVAL.NEED_CPE = False
_C.EVAL.NEED_F1 = False
_C.EVAL.NEED_RMSE = False
_C.EVAL.FORCE_CUBE = False
def merge_from_file(cfg_path):
config = _C.clone()
config.merge_from_file(cfg_path)
return config
def get_config(args=None):
config = _C.clone()
if args:
if 'cfg' in args and args.cfg:
config.merge_from_file(args.cfg)
if 'mode' in args and args.mode:
config.MODE = args.mode
if 'debug' in args and args.debug:
config.DEBUG = args.debug
if 'hidden_bar' in args and args.hidden_bar:
config.SHOW_BAR = False
if 'bs' in args and args.bs:
config.DATA.BATCH_SIZE = args.bs
if 'save_eval' in args and args.save_eval:
config.SAVE_EVAL = True
if 'val_name' in args and args.val_name:
config.VAL_NAME = args.val_name
if 'post_processing' in args and args.post_processing:
config.EVAL.POST_PROCESSING = args.post_processing
if 'need_cpe' in args and args.need_cpe:
config.EVAL.NEED_CPE = args.need_cpe
if 'need_f1' in args and args.need_f1:
config.EVAL.NEED_F1 = args.need_f1
if 'need_rmse' in args and args.need_rmse:
config.EVAL.NEED_RMSE = args.need_rmse
if 'force_cube' in args and args.force_cube:
config.EVAL.FORCE_CUBE = args.force_cube
if 'wall_num' in args and args.wall_num:
config.DATA.WALL_NUM = args.wall_num
args = config.MODEL.ARGS[0]
config.CKPT.DIR = os.path.join(config.CKPT.ROOT, f"{args['decoder_name']}_{args['output_name']}_Net",
config.TAG, 'debug' if config.DEBUG else '')
config.CKPT.RESULT_DIR = os.path.join(config.CKPT.DIR, 'results', config.MODE)
config.LOGGER.DIR = os.path.join(config.CKPT.DIR, "logs")
core_number = os.popen("grep 'physical id' /proc/cpuinfo | sort | uniq | wc -l").read()
try:
config.DATA.NUM_WORKERS = int(core_number) * 2
print(f"System core number: {config.DATA.NUM_WORKERS}")
except ValueError:
print(f"Can't get system core number, will use config: { config.DATA.NUM_WORKERS}")
config.freeze()
return config
def get_rank_config(cfg, local_rank, world_size):
local_rank = 0 if local_rank is None else local_rank
config = cfg.clone()
config.defrost()
if world_size > 1:
ids = config.TRAIN.DEVICE.split(':')[-1].split(',') if ':' in config.TRAIN.DEVICE else range(world_size)
config.TRAIN.DEVICE = f'cuda:{ids[local_rank]}'
config.LOCAL_RANK = local_rank
config.WORLD_SIZE = world_size
config.SEED = config.SEED + local_rank
config.freeze()
return config
|