File size: 10,220 Bytes
88b0dcb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 |
"""
@Date: 2021/09/19
@description:
"""
import json
import os
import argparse
import cv2
import numpy as np
import torch
import matplotlib.pyplot as plt
import glob
from tqdm import tqdm
from PIL import Image
from config.defaults import merge_from_file, get_config
from dataset.mp3d_dataset import MP3DDataset
from dataset.zind_dataset import ZindDataset
from models.build import build_model
from loss import GradLoss
from postprocessing.post_process import post_process
from preprocessing.pano_lsd_align import panoEdgeDetection, rotatePanorama
from utils.boundary import corners2boundaries, layout2depth
from utils.conversion import depth2xyz
from utils.logger import get_logger
from utils.misc import tensor2np_d, tensor2np
from evaluation.accuracy import show_grad
from models.lgt_net import LGT_Net
from utils.writer import xyz2json
from visualization.boundary import draw_boundaries
from visualization.floorplan import draw_floorplan, draw_iou_floorplan
from visualization.obj3d import create_3d_obj
def parse_option():
parser = argparse.ArgumentParser(description='Panorama Layout Transformer training and evaluation script')
parser.add_argument('--img_glob',
type=str,
required=True,
help='image glob path')
parser.add_argument('--cfg',
type=str,
required=True,
metavar='FILE',
help='path of config file')
parser.add_argument('--post_processing',
type=str,
default='manhattan',
choices=['manhattan', 'atalanta', 'original'],
help='post-processing type')
parser.add_argument('--output_dir',
type=str,
default='src/output',
help='path of output')
parser.add_argument('--visualize_3d', action='store_true',
help='visualize_3d')
parser.add_argument('--output_3d', action='store_true',
help='output_3d')
parser.add_argument('--device',
type=str,
default='cuda',
help='device')
args = parser.parse_args()
args.mode = 'test'
print("arguments:")
for arg in vars(args):
print(arg, ":", getattr(args, arg))
print("-" * 50)
return args
def visualize_2d(img, dt, show_depth=True, show_floorplan=True, show=False, save_path=None):
dt_np = tensor2np_d(dt)
dt_depth = dt_np['depth'][0]
dt_xyz = depth2xyz(np.abs(dt_depth))
dt_ratio = dt_np['ratio'][0][0]
dt_boundaries = corners2boundaries(dt_ratio, corners_xyz=dt_xyz, step=None, visible=False, length=img.shape[1])
vis_img = draw_boundaries(img, boundary_list=dt_boundaries, boundary_color=[0, 1, 0])
if 'processed_xyz' in dt:
dt_boundaries = corners2boundaries(dt_ratio, corners_xyz=dt['processed_xyz'][0], step=None, visible=False,
length=img.shape[1])
vis_img = draw_boundaries(vis_img, boundary_list=dt_boundaries, boundary_color=[1, 0, 0])
if show_depth:
dt_grad_img = show_depth_normal_grad(dt)
grad_h = dt_grad_img.shape[0]
vis_merge = [
vis_img[0:-grad_h, :, :],
dt_grad_img,
]
vis_img = np.concatenate(vis_merge, axis=0)
# vis_img = dt_grad_img.transpose(1, 2, 0)[100:]
if show_floorplan:
if 'processed_xyz' in dt:
floorplan = draw_iou_floorplan(dt['processed_xyz'][0][..., ::2], dt_xyz[..., ::2],
dt_board_color=[1, 0, 0, 1], gt_board_color=[0, 1, 0, 1])
else:
floorplan = show_alpha_floorplan(dt_xyz, border_color=[0, 1, 0, 1])
vis_img = np.concatenate([vis_img, floorplan[:, 60:-60, :]], axis=1)
if show:
plt.imshow(vis_img)
plt.show()
if save_path:
result = Image.fromarray((vis_img * 255).astype(np.uint8))
result.save(save_path)
return vis_img
def preprocess(img_ori, q_error=0.7, refine_iter=3, vp_cache_path=None):
# Align images with VP
if os.path.exists(vp_cache_path):
with open(vp_cache_path) as f:
vp = [[float(v) for v in line.rstrip().split(' ')] for line in f.readlines()]
vp = np.array(vp)
else:
# VP detection and line segment extraction
_, vp, _, _, _, _, _ = panoEdgeDetection(img_ori,
qError=q_error,
refineIter=refine_iter)
i_img = rotatePanorama(img_ori, vp[2::-1])
if vp_cache_path is not None:
with open(vp_cache_path, 'w') as f:
for i in range(3):
f.write('%.6f %.6f %.6f\n' % (vp[i, 0], vp[i, 1], vp[i, 2]))
return i_img, vp
def show_depth_normal_grad(dt):
grad_conv = GradLoss().to(dt['depth'].device).grad_conv
dt_grad_img = show_grad(dt['depth'][0], grad_conv, 50)
dt_grad_img = cv2.resize(dt_grad_img, (1024, 60), interpolation=cv2.INTER_NEAREST)
return dt_grad_img
def show_alpha_floorplan(dt_xyz, side_l=512, border_color=None):
if border_color is None:
border_color = [1, 0, 0, 1]
fill_color = [0.2, 0.2, 0.2, 0.2]
dt_floorplan = draw_floorplan(xz=dt_xyz[..., ::2], fill_color=fill_color,
border_color=border_color, side_l=side_l, show=False, center_color=[1, 0, 0, 1])
dt_floorplan = Image.fromarray((dt_floorplan * 255).astype(np.uint8), mode='RGBA')
back = np.zeros([side_l, side_l, len(fill_color)], dtype=np.float)
back[..., :] = [0.8, 0.8, 0.8, 1]
back = Image.fromarray((back * 255).astype(np.uint8), mode='RGBA')
iou_floorplan = Image.alpha_composite(back, dt_floorplan).convert("RGB")
dt_floorplan = np.array(iou_floorplan) / 255.0
return dt_floorplan
def save_pred_json(xyz, ration, save_path):
# xyz[..., -1] = -xyz[..., -1]
json_data = xyz2json(xyz, ration)
with open(save_path, 'w') as f:
f.write(json.dumps(json_data, indent=4) + '\n')
return json_data
def inference():
if len(img_paths) == 0:
logger.error('No images found')
return
bar = tqdm(img_paths, ncols=100)
for img_path in bar:
if not os.path.isfile(img_path):
logger.error(f'The {img_path} not is file')
continue
name = os.path.basename(img_path).split('.')[0]
bar.set_description(name)
img = np.array(Image.open(img_path).resize((1024, 512), Image.Resampling.BICUBIC))[..., :3]
if args.post_processing is not None and 'manhattan' in args.post_processing:
bar.set_description("Preprocessing")
img, vp = preprocess(img, vp_cache_path=os.path.join(args.output_dir, f"{name}_vp.txt"))
img = (img / 255.0).astype(np.float32)
run_one_inference(img, model, args, name)
def inference_dataset(dataset):
bar = tqdm(dataset, ncols=100)
for data in bar:
bar.set_description(data['id'])
run_one_inference(data['image'].transpose(1, 2, 0), model, args, name=data['id'], logger=logger)
@torch.no_grad()
def run_one_inference(img, model, args, name, logger, show=True, show_depth=True,
show_floorplan=True, mesh_format='.gltf', mesh_resolution=512):
model.eval()
logger.info("model inference...")
dt = model(torch.from_numpy(img.transpose(2, 0, 1)[None]).to(args.device))
if args.post_processing != 'original':
logger.info(f"post-processing, type:{args.post_processing}...")
dt['processed_xyz'] = post_process(tensor2np(dt['depth']), type_name=args.post_processing)
visualize_2d(img, dt,
show_depth=show_depth,
show_floorplan=show_floorplan,
show=show,
save_path=os.path.join(args.output_dir, f"{name}_pred.png"))
output_xyz = dt['processed_xyz'][0] if 'processed_xyz' in dt else depth2xyz(tensor2np(dt['depth'][0]))
logger.info(f"saving predicted layout json...")
json_data = save_pred_json(output_xyz, tensor2np(dt['ratio'][0])[0],
save_path=os.path.join(args.output_dir, f"{name}_pred.json"))
# if args.visualize_3d:
# from visualization.visualizer.visualizer import visualize_3d
# visualize_3d(json_data, (img * 255).astype(np.uint8))
if args.visualize_3d or args.output_3d:
dt_boundaries = corners2boundaries(tensor2np(dt['ratio'][0])[0], corners_xyz=output_xyz, step=None,
length=mesh_resolution if 'processed_xyz' in dt else None,
visible=True if 'processed_xyz' in dt else False)
dt_layout_depth = layout2depth(dt_boundaries, show=False)
logger.info(f"creating 3d mesh ...")
create_3d_obj(cv2.resize(img, dt_layout_depth.shape[::-1]), dt_layout_depth,
save_path=os.path.join(args.output_dir, f"{name}_3d{mesh_format}") if args.output_3d else None,
mesh=True, show=args.visualize_3d)
if __name__ == '__main__':
logger = get_logger()
args = parse_option()
config = get_config(args)
if ('cuda' in args.device or 'cuda' in config.TRAIN.DEVICE) and not torch.cuda.is_available():
logger.info(f'The {args.device} is not available, will use cpu ...')
config.defrost()
args.device = "cpu"
config.TRAIN.DEVICE = "cpu"
config.freeze()
model, _, _, _ = build_model(config, logger)
os.makedirs(args.output_dir, exist_ok=True)
img_paths = sorted(glob.glob(args.img_glob))
inference()
# dataset = MP3DDataset(root_dir='./src/dataset/mp3d', mode='test', split_list=[
# ['7y3sRwLe3Va', '155fac2d50764bf09feb6c8f33e8fb76'],
# ['e9zR4mvMWw7', 'c904c55a5d0e420bbd6e4e030b9fe5b4'],
# ])
# dataset = ZindDataset(root_dir='./src/dataset/zind', mode='test', split_list=[
# '1169_pano_21',
# '0583_pano_59',
# ], vp_align=True)
# inference_dataset(dataset)
|