File size: 4,257 Bytes
88b0dcb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
""" 
@Date: 2021/10/06
@description: Use the approach proposed by DuLa-Net
"""
import cv2
import numpy as np
import math
import matplotlib.pyplot as plt

from visualization.floorplan import draw_floorplan


def merge_near(lst, diag):
    group = [[0, ]]
    for i in range(1, len(lst)):
        if lst[i] - np.mean(group[-1]) < diag * 0.02:
            group[-1].append(lst[i])
        else:
            group.append([lst[i], ])
    if len(group) == 1:
        group = [lst[0], lst[-1]]
    else:
        group = [int(np.mean(x)) for x in group]
    return group


def fit_layout_old(floor_xz, need_cube=False, show=False, block_eps=0.05):
    show_radius = np.linalg.norm(floor_xz, axis=-1).max()
    side_l = 512
    floorplan = draw_floorplan(xz=floor_xz, show_radius=show_radius, show=show, scale=1, side_l=side_l).astype(np.uint8)
    center = np.array([side_l / 2, side_l / 2])
    polys = cv2.findContours(floorplan, 1, 2)
    if isinstance(polys, tuple):
        if len(polys) == 3:
            # opencv 3
            polys = list(polys[1])
        else:
            polys = list(polys[0])
    polys.sort(key=lambda x: cv2.contourArea(x), reverse=True)
    poly = polys[0]
    sub_x, sub_y, w, h = cv2.boundingRect(poly)
    floorplan_sub = floorplan[sub_y:sub_y + h, sub_x:sub_x + w]
    sub_center = center - np.array([sub_x, sub_y])
    polys = cv2.findContours(floorplan_sub, 1, 2)
    if isinstance(polys, tuple):
        if len(polys) == 3:
            polys = polys[1]
        else:
            polys = polys[0]
    poly = polys[0]
    epsilon = 0.005 * cv2.arcLength(poly, True)
    poly = cv2.approxPolyDP(poly, epsilon, True)

    x_lst = [0, ]
    y_lst = [0, ]
    for i in range(len(poly)):
        p1 = poly[i][0]
        p2 = poly[(i + 1) % len(poly)][0]

        if (p2[0] - p1[0]) == 0:
            slope = 10
        else:
            slope = abs((p2[1] - p1[1]) / (p2[0] - p1[0]))

        if slope <= 1:
            s = int((p1[1] + p2[1]) / 2)
            y_lst.append(s)
        elif slope > 1:
            s = int((p1[0] + p2[0]) / 2)
            x_lst.append(s)

    x_lst.append(floorplan_sub.shape[1])
    y_lst.append(floorplan_sub.shape[0])
    x_lst.sort()
    y_lst.sort()

    diag = math.sqrt(math.pow(floorplan_sub.shape[1], 2) + math.pow(floorplan_sub.shape[0], 2))
    x_lst = merge_near(x_lst, diag)
    y_lst = merge_near(y_lst, diag)
    if need_cube and len(x_lst) > 2:
        x_lst = [x_lst[0], x_lst[-1]]
    if need_cube and len(y_lst) > 2:
        y_lst = [y_lst[0], y_lst[-1]]

    ans = np.zeros((floorplan_sub.shape[0], floorplan_sub.shape[1]))
    for i in range(len(x_lst) - 1):
        for j in range(len(y_lst) - 1):
            sample = floorplan_sub[y_lst[j]:y_lst[j + 1], x_lst[i]:x_lst[i + 1]]
            score = 0 if sample.size == 0 else sample.mean()
            if score >= 0.3:
                ans[y_lst[j]:y_lst[j + 1], x_lst[i]:x_lst[i + 1]] = 1

    pred = np.uint8(ans)
    pred_polys = cv2.findContours(pred, 1, 3)
    if isinstance(pred_polys, tuple):
        if len(pred_polys) == 3:
            pred_polys = pred_polys[1]
        else:
            pred_polys = pred_polys[0]

    polygon = [(p[0][1], p[0][0]) for p in pred_polys[0][::-1]]

    v = np.array([p[0] + sub_y for p in polygon])
    u = np.array([p[1] + sub_x for p in polygon])
    #     side_l
    # v<-----------|o
    # |     |      |
    # | ----|----z |   side_l
    # |     |      |
    # |     x     \|/
    # |------------u
    side_l = floorplan.shape[0]
    pred_xz = np.concatenate((u[:, np.newaxis] - side_l // 2, side_l // 2 - v[:, np.newaxis]), axis=1)

    pred_xz = pred_xz * show_radius / (side_l // 2)
    if show:
        draw_floorplan(pred_xz, show_radius=show_radius, show=show)
    return pred_xz


if __name__ == '__main__':
    from utils.conversion import uv2xyz

    pano_img = np.zeros([512, 1024, 3])
    corners = np.array([[0.1, 0.7],
                        [0.4, 0.7],
                        [0.3, 0.6],
                        [0.6, 0.6],
                        [0.8, 0.7]])
    xz = uv2xyz(corners)[..., ::2]
    draw_floorplan(xz, show=True, marker_color=None, center_color=0.8)

    xz = fit_layout_old(xz)
    draw_floorplan(xz, show=True, marker_color=None, center_color=0.8)