File size: 3,758 Bytes
88b0dcb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import torch
import torch.nn.functional as F

from torch import nn, einsum
from einops import rearrange


class PreNorm(nn.Module):
    def __init__(self, dim, fn):
        super().__init__()
        self.norm = nn.LayerNorm(dim)
        self.fn = fn

    def forward(self, x, **kwargs):
        return self.fn(self.norm(x), **kwargs)


class GELU(nn.Module):
    def forward(self, input):
        return F.gelu(input)


class Attend(nn.Module):

    def __init__(self, dim=None):
        super().__init__()
        self.dim = dim

    def forward(self, input):
        return F.softmax(input, dim=self.dim, dtype=input.dtype)


class FeedForward(nn.Module):
    def __init__(self, dim, hidden_dim, dropout=0.):
        super().__init__()
        self.net = nn.Sequential(
            nn.Linear(dim, hidden_dim),
            GELU(),
            nn.Dropout(dropout),
            nn.Linear(hidden_dim, dim),
            nn.Dropout(dropout)
        )

    def forward(self, x):
        return self.net(x)


class Attention(nn.Module):
    def __init__(self, dim, heads=8, dim_head=64, dropout=0.):
        super().__init__()
        inner_dim = dim_head * heads
        project_out = not (heads == 1 and dim_head == dim)

        self.heads = heads
        self.scale = dim_head ** -0.5

        self.attend = Attend(dim=-1)
        self.to_qkv = nn.Linear(dim, inner_dim * 3, bias=False)

        self.to_out = nn.Sequential(
            nn.Linear(inner_dim, dim),
            nn.Dropout(dropout)
        ) if project_out else nn.Identity()

    def forward(self, x):
        b, n, _, h = *x.shape, self.heads
        qkv = self.to_qkv(x).chunk(3, dim=-1)
        q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h=h), qkv)
        dots = einsum('b h i d, b h j d -> b h i j', q, k) * self.scale
        attn = self.attend(dots)
        out = einsum('b h i j, b h j d -> b h i d', attn, v)
        out = rearrange(out, 'b h n d -> b n (h d)')
        return self.to_out(out)


class Conv(nn.Module):
    def __init__(self, dim, dropout=0.):
        super().__init__()
        self.dim = dim
        self.net = nn.Sequential(
            nn.Conv1d(dim, dim, kernel_size=3, stride=1, padding=0),
            nn.Dropout(dropout)
        )

    def forward(self, x):
        x = x.transpose(1, 2)
        x = torch.cat([x[..., -1:], x, x[..., :1]], dim=-1)
        x = self.net(x)
        return x.transpose(1, 2)


class ConvTransformer(nn.Module):
    def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout=0.):
        super().__init__()
        self.layers = nn.ModuleList([])
        for _ in range(depth):
            self.layers.append(nn.ModuleList([
                PreNorm(dim, Attention(dim, heads=heads, dim_head=dim_head, dropout=dropout)),
                PreNorm(dim, FeedForward(dim, mlp_dim, dropout=dropout)),
                PreNorm(dim, Conv(dim, dropout=dropout))
            ]))

    def forward(self, x):
        for attn, ff, cov in self.layers:
            x = attn(x) + x
            x = ff(x) + x
            x = cov(x) + x
        return x


if __name__ == '__main__':
    token_dim = 1024
    toke_len = 256

    transformer = ConvTransformer(dim=token_dim,
                                  depth=6,
                                  heads=16,
                                  dim_head=64,
                                  mlp_dim=2048,
                                  dropout=0.1)

    total = sum(p.numel() for p in transformer.parameters())
    trainable = sum(p.numel() for p in transformer.parameters() if p.requires_grad)
    print('parameter total:{:,}, trainable:{:,}'.format(total, trainable))

    input = torch.randn(1, toke_len, token_dim)
    output = transformer(input)
    print(output.shape)