File size: 9,393 Bytes
88b0dcb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 |
"""
@author:
@Date: 2021/07/17
@description: Use the feature extractor proposed by HorizonNet
"""
import numpy as np
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision.models as models
import functools
from models.base_model import BaseModule
ENCODER_RESNET = [
'resnet18', 'resnet34', 'resnet50', 'resnet101', 'resnet152',
'resnext50_32x4d', 'resnext101_32x8d'
]
ENCODER_DENSENET = [
'densenet121', 'densenet169', 'densenet161', 'densenet201'
]
def lr_pad(x, padding=1):
''' Pad left/right-most to each other instead of zero padding '''
return torch.cat([x[..., -padding:], x, x[..., :padding]], dim=3)
class LR_PAD(nn.Module):
''' Pad left/right-most to each other instead of zero padding '''
def __init__(self, padding=1):
super(LR_PAD, self).__init__()
self.padding = padding
def forward(self, x):
return lr_pad(x, self.padding)
def wrap_lr_pad(net):
for name, m in net.named_modules():
if not isinstance(m, nn.Conv2d):
continue
if m.padding[1] == 0:
continue
w_pad = int(m.padding[1])
m.padding = (m.padding[0], 0) # weight padding is 0, LR_PAD then use valid padding will keep dim of weight
names = name.split('.')
root = functools.reduce(lambda o, i: getattr(o, i), [net] + names[:-1])
setattr(
root, names[-1],
nn.Sequential(LR_PAD(w_pad), m)
)
'''
Encoder
'''
class Resnet(nn.Module):
def __init__(self, backbone='resnet50', pretrained=True):
super(Resnet, self).__init__()
assert backbone in ENCODER_RESNET
self.encoder = getattr(models, backbone)(pretrained=pretrained)
del self.encoder.fc, self.encoder.avgpool
def forward(self, x):
features = []
x = self.encoder.conv1(x)
x = self.encoder.bn1(x)
x = self.encoder.relu(x)
x = self.encoder.maxpool(x)
x = self.encoder.layer1(x)
features.append(x) # 1/4
x = self.encoder.layer2(x)
features.append(x) # 1/8
x = self.encoder.layer3(x)
features.append(x) # 1/16
x = self.encoder.layer4(x)
features.append(x) # 1/32
return features
def list_blocks(self):
lst = [m for m in self.encoder.children()]
block0 = lst[:4]
block1 = lst[4:5]
block2 = lst[5:6]
block3 = lst[6:7]
block4 = lst[7:8]
return block0, block1, block2, block3, block4
class Densenet(nn.Module):
def __init__(self, backbone='densenet169', pretrained=True):
super(Densenet, self).__init__()
assert backbone in ENCODER_DENSENET
self.encoder = getattr(models, backbone)(pretrained=pretrained)
self.final_relu = nn.ReLU(inplace=True)
del self.encoder.classifier
def forward(self, x):
lst = []
for m in self.encoder.features.children():
x = m(x)
lst.append(x)
features = [lst[4], lst[6], lst[8], self.final_relu(lst[11])]
return features
def list_blocks(self):
lst = [m for m in self.encoder.features.children()]
block0 = lst[:4]
block1 = lst[4:6]
block2 = lst[6:8]
block3 = lst[8:10]
block4 = lst[10:]
return block0, block1, block2, block3, block4
'''
Decoder
'''
class ConvCompressH(nn.Module):
''' Reduce feature height by factor of two '''
def __init__(self, in_c, out_c, ks=3):
super(ConvCompressH, self).__init__()
assert ks % 2 == 1
self.layers = nn.Sequential(
nn.Conv2d(in_c, out_c, kernel_size=ks, stride=(2, 1), padding=ks // 2),
nn.BatchNorm2d(out_c),
nn.ReLU(inplace=True),
)
def forward(self, x):
return self.layers(x)
class GlobalHeightConv(nn.Module):
def __init__(self, in_c, out_c):
super(GlobalHeightConv, self).__init__()
self.layer = nn.Sequential(
ConvCompressH(in_c, in_c // 2),
ConvCompressH(in_c // 2, in_c // 2),
ConvCompressH(in_c // 2, in_c // 4),
ConvCompressH(in_c // 4, out_c),
)
def forward(self, x, out_w):
x = self.layer(x)
factor = out_w // x.shape[3]
x = torch.cat([x[..., -1:], x, x[..., :1]], 3) # 先补左右,相当于warp模式,然后进行插值
d_type = x.dtype
x = F.interpolate(x, size=(x.shape[2], out_w + 2 * factor), mode='bilinear', align_corners=False)
# if x.dtype != d_type:
# x = x.type(d_type)
x = x[..., factor:-factor]
return x
class GlobalHeightStage(nn.Module):
def __init__(self, c1, c2, c3, c4, out_scale=8):
''' Process 4 blocks from encoder to single multiscale features '''
super(GlobalHeightStage, self).__init__()
self.cs = c1, c2, c3, c4
self.out_scale = out_scale
self.ghc_lst = nn.ModuleList([
GlobalHeightConv(c1, c1 // out_scale),
GlobalHeightConv(c2, c2 // out_scale),
GlobalHeightConv(c3, c3 // out_scale),
GlobalHeightConv(c4, c4 // out_scale),
])
def forward(self, conv_list, out_w):
assert len(conv_list) == 4
bs = conv_list[0].shape[0]
feature = torch.cat([
f(x, out_w).reshape(bs, -1, out_w)
for f, x, out_c in zip(self.ghc_lst, conv_list, self.cs)
], dim=1)
# conv_list:
# 0 [b, 256(d), 128(h), 256(w)] ->(4*{conv3*3 step2*1} : d/8 h/16)-> [b 32(d) 8(h) 256(w)]
# 1 [b, 512(d), 64(h), 128(w)] ->(4*{conv3*3 step2*1} : d/8 h/16)-> [b 64(d) 4(h) 128(w)]
# 2 [b, 1024(d), 32(h), 64(w)] ->(4*{conv3*3 step2*1} : d/8 h/16)-> [b 128(d) 2(h) 64(w)]
# 3 [b, 2048(d), 16(h), 32(w)] ->(4*{conv3*3 step2*1} : d/8 h/16)-> [b 256(d) 1(h) 32(w)]
# 0 ->(unsampledW256} : w=256)-> [b 32(d) 8(h) 256(w)] ->(reshapeH1} : h=1)-> [b 256(d) 1(h) 256(w)]
# 1 ->(unsampledW256} : w=256)-> [b 64(d) 4(h) 256(w)] ->(reshapeH1} : h=1)-> [b 256(d) 1(h) 256(w)]
# 2 ->(unsampledW256} : w=256)-> [b 128(d) 2(h) 256(w)] ->(reshapeH1} : h=1)-> [b 256(d) 1(h) 256(w)]
# 3 ->(unsampledW256} : w=256)-> [b 256(d) 1(h) 256(w)] ->(reshapeH1} : h=1)-> [b 256(d) 1(h) 256(w)]
# 0 --\
# 1 -- \
# ---- cat [b 1024(d) 1(h) 256(w)]
# 2 -- /
# 3 --/
return feature # [b 1024(d) 256(w)]
class HorizonNetFeatureExtractor(nn.Module):
x_mean = torch.FloatTensor(np.array([0.485, 0.456, 0.406])[None, :, None, None])
x_std = torch.FloatTensor(np.array([0.229, 0.224, 0.225])[None, :, None, None])
def __init__(self, backbone='resnet50'):
super(HorizonNetFeatureExtractor, self).__init__()
self.out_scale = 8
self.step_cols = 4
# Encoder
if backbone.startswith('res'):
self.feature_extractor = Resnet(backbone, pretrained=True)
elif backbone.startswith('dense'):
self.feature_extractor = Densenet(backbone, pretrained=True)
else:
raise NotImplementedError()
# Inference channels number from each block of the encoder
with torch.no_grad():
dummy = torch.zeros(1, 3, 512, 1024)
c1, c2, c3, c4 = [b.shape[1] for b in self.feature_extractor(dummy)]
self.c_last = (c1 * 8 + c2 * 4 + c3 * 2 + c4 * 1) // self.out_scale
# Convert features from 4 blocks of the encoder into B x C x 1 x W'
self.reduce_height_module = GlobalHeightStage(c1, c2, c3, c4, self.out_scale)
self.x_mean.requires_grad = False
self.x_std.requires_grad = False
wrap_lr_pad(self)
def _prepare_x(self, x):
x = x.clone()
if self.x_mean.device != x.device:
self.x_mean = self.x_mean.to(x.device)
self.x_std = self.x_std.to(x.device)
x[:, :3] = (x[:, :3] - self.x_mean) / self.x_std
return x
def forward(self, x):
# x [b 3 512 1024]
x = self._prepare_x(x) # [b 3 512 1024]
conv_list = self.feature_extractor(x)
# conv_list:
# 0 [b, 256(d), 128(h), 256(w)]
# 1 [b, 512(d), 64(h), 128(w)]
# 2 [b, 1024(d), 32(h), 64(w)]
# 3 [b, 2048(d), 16(h), 32(w)]
x = self.reduce_height_module(conv_list, x.shape[3] // self.step_cols) # [b 1024(d) 1(h) 256(w)]
# After reduce_Height_module, h becomes 1, the information is compressed to d,
# and w contains different resolutions
# 0 [b, 256(d), 128(h), 256(w)] -> [b, 256/8(d) * 128/16(h') = 256(d), 1(h) 256(w)]
# 1 [b, 512(d), 64(h), 128(w)] -> [b, 512/8(d) * 64/16(h') = 256(d), 1(h) 256(w)]
# 2 [b, 1024(d), 32(h), 64(w)] -> [b, 1024/8(d) * 32/16(h') = 256(d), 1(h) 256(w)]
# 3 [b, 2048(d), 16(h), 32(w)] -> [b, 2048/8(d) * 16/16(h') = 256(d), 1(h) 256(w)]
return x # [b 1024(d) 1(h) 256(w)]
if __name__ == '__main__':
from PIL import Image
extractor = HorizonNetFeatureExtractor()
img = np.array(Image.open("../../src/demo.png")).transpose((2, 0, 1))
input = torch.Tensor([img]) # 1 3 512 1024
feature = extractor(input)
print(feature.shape) # 1, 1024, 256 | 1024 = (out_c_0*h_0 +... + out_c_3*h_3) = 256 * 4
|