File size: 1,733 Bytes
88b0dcb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 |
from models.modules.transformer_modules import *
class Swin_Transformer(nn.Module):
def __init__(self, dim, depth, heads, win_size, dim_head, mlp_dim,
dropout=0., patch_num=None, ape=None, rpe=None, rpe_pos=1):
super().__init__()
self.absolute_pos_embed = None if patch_num is None or ape is None else AbsolutePosition(dim, dropout,
patch_num, ape)
self.pos_dropout = nn.Dropout(dropout)
self.layers = nn.ModuleList([])
for i in range(depth):
self.layers.append(nn.ModuleList([
PreNorm(dim, WinAttention(dim, win_size=win_size, shift=0 if (i % 2 == 0) else win_size // 2,
heads=heads, dim_head=dim_head, dropout=dropout, rpe=rpe, rpe_pos=rpe_pos)),
PreNorm(dim, FeedForward(dim, mlp_dim, dropout=dropout)),
]))
def forward(self, x):
if self.absolute_pos_embed is not None:
x = self.absolute_pos_embed(x)
x = self.pos_dropout(x)
for attn, ff in self.layers:
x = attn(x) + x
x = ff(x) + x
return x
if __name__ == '__main__':
token_dim = 1024
toke_len = 256
transformer = Swin_Transformer(dim=token_dim,
depth=6,
heads=16,
win_size=8,
dim_head=64,
mlp_dim=2048,
dropout=0.1)
input = torch.randn(1, toke_len, token_dim)
output = transformer(input)
print(output.shape)
|