File size: 7,940 Bytes
88b0dcb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 |
"""
@Date: 2021/10/06
@description: Use the approach proposed by DuLa-Net
"""
import cv2
import numpy as np
import math
import matplotlib.pyplot as plt
from visualization.floorplan import draw_floorplan
def merge_near(lst, diag):
group = [[0, ]]
for i in range(1, len(lst)):
if lst[i][1] == 0 and lst[i][0] - np.mean(group[-1]) < diag * 0.02:
group[-1].append(lst[i][0])
else:
group.append([lst[i][0], ])
if len(group) == 1:
group = [lst[0][0], lst[-1][0]]
else:
group = [int(np.mean(x)) for x in group]
return group
def fit_layout(floor_xz, need_cube=False, show=False, block_eps=0.2):
show_radius = np.linalg.norm(floor_xz, axis=-1).max()
side_l = 512
floorplan = draw_floorplan(xz=floor_xz, show_radius=show_radius, show=show, scale=1, side_l=side_l).astype(np.uint8)
center = np.array([side_l / 2, side_l / 2])
polys = cv2.findContours(floorplan, 1, 2)
if isinstance(polys, tuple):
if len(polys) == 3:
# opencv 3
polys = list(polys[1])
else:
polys = list(polys[0])
polys.sort(key=lambda x: cv2.contourArea(x), reverse=True)
poly = polys[0]
sub_x, sub_y, w, h = cv2.boundingRect(poly)
floorplan_sub = floorplan[sub_y:sub_y + h, sub_x:sub_x + w]
sub_center = center - np.array([sub_x, sub_y])
polys = cv2.findContours(floorplan_sub, 1, 2)
if isinstance(polys, tuple):
if len(polys) == 3:
polys = polys[1]
else:
polys = polys[0]
poly = polys[0]
epsilon = 0.005 * cv2.arcLength(poly, True)
poly = cv2.approxPolyDP(poly, epsilon, True)
x_lst = [[0, 0], ]
y_lst = [[0, 0], ]
ans = np.zeros((floorplan_sub.shape[0], floorplan_sub.shape[1]))
for i in range(len(poly)):
p1 = poly[i][0]
p2 = poly[(i + 1) % len(poly)][0]
# We added occlusion detection
cp1 = p1 - sub_center
cp2 = p2 - sub_center
p12 = p2 - p1
l1 = np.linalg.norm(cp1)
l2 = np.linalg.norm(cp2)
l3 = np.linalg.norm(p12)
# We added occlusion detection
is_block1 = abs(np.cross(cp1/l1, cp2/l2)) < block_eps
is_block2 = abs(np.cross(cp2/l2, p12/l3)) < block_eps*2
is_block = is_block1 and is_block2
if (p2[0] - p1[0]) == 0:
slope = 10
else:
slope = abs((p2[1] - p1[1]) / (p2[0] - p1[0]))
if is_block:
s = p1[1] if l1 < l2 else p2[1]
y_lst.append([s, 1])
s = p1[0] if l1 < l2 else p2[0]
x_lst.append([s, 1])
left = p1[0] if p1[0] < p2[0] else p2[0]
right = p1[0] if p1[0] > p2[0] else p2[0]
top = p1[1] if p1[1] < p2[1] else p2[1]
bottom = p1[1] if p1[1] > p2[1] else p2[1]
sample = floorplan_sub[top:bottom, left:right]
score = 0 if sample.size == 0 else sample.mean()
if score >= 0.3:
ans[top:bottom, left:right] = 1
else:
if slope <= 1:
s = int((p1[1] + p2[1]) / 2)
y_lst.append([s, 0])
elif slope > 1:
s = int((p1[0] + p2[0]) / 2)
x_lst.append([s, 0])
debug_show = False
if debug_show:
plt.figure(dpi=300)
plt.axis('off')
a = cv2.drawMarker(floorplan_sub.copy()*0.5, tuple([floorplan_sub.shape[1] // 2, floorplan_sub.shape[0] // 2]), [1], markerType=0, markerSize=10, thickness=2)
plt.imshow(cv2.drawContours(a, [poly], 0, 1, 1))
plt.savefig('src/1.png', bbox_inches='tight', transparent=True, pad_inches=0)
plt.show()
plt.figure(dpi=300)
plt.axis('off')
a = cv2.drawMarker(ans.copy()*0.5, tuple([floorplan_sub.shape[1] // 2, floorplan_sub.shape[0] // 2]), [1], markerType=0, markerSize=10, thickness=2)
plt.imshow(cv2.drawContours(a, [poly], 0, 1, 1))
# plt.show()
plt.savefig('src/2.png', bbox_inches='tight', transparent=True, pad_inches=0)
plt.show()
x_lst.append([floorplan_sub.shape[1], 0])
y_lst.append([floorplan_sub.shape[0], 0])
x_lst.sort(key=lambda x: x[0])
y_lst.sort(key=lambda x: x[0])
diag = math.sqrt(math.pow(floorplan_sub.shape[1], 2) + math.pow(floorplan_sub.shape[0], 2))
x_lst = merge_near(x_lst, diag)
y_lst = merge_near(y_lst, diag)
if need_cube and len(x_lst) > 2:
x_lst = [x_lst[0], x_lst[-1]]
if need_cube and len(y_lst) > 2:
y_lst = [y_lst[0], y_lst[-1]]
for i in range(len(x_lst) - 1):
for j in range(len(y_lst) - 1):
sample = floorplan_sub[y_lst[j]:y_lst[j + 1], x_lst[i]:x_lst[i + 1]]
score = 0 if sample.size == 0 else sample.mean()
if score >= 0.3:
ans[y_lst[j]:y_lst[j + 1], x_lst[i]:x_lst[i + 1]] = 1
if debug_show:
plt.figure(dpi=300)
plt.axis('off')
a = cv2.drawMarker(ans.copy() * 0.5, tuple([floorplan_sub.shape[1] // 2, floorplan_sub.shape[0] // 2]), [1],
markerType=0, markerSize=10, thickness=2)
plt.imshow(cv2.drawContours(a, [poly], 0, 1, 1))
# plt.show()
plt.savefig('src/3.png', bbox_inches='tight', transparent=True, pad_inches=0)
plt.show()
pred = np.uint8(ans)
pred_polys = cv2.findContours(pred, 1, 3)
if isinstance(pred_polys, tuple):
if len(pred_polys) == 3:
pred_polys = pred_polys[1]
else:
pred_polys = pred_polys[0]
pred_polys.sort(key=lambda x: cv2.contourArea(x), reverse=True)
pred_polys = pred_polys[0]
if debug_show:
plt.figure(dpi=300)
plt.axis('off')
a = cv2.drawMarker(ans.copy() * 0.5, tuple([floorplan_sub.shape[1] // 2, floorplan_sub.shape[0] // 2]), [1],
markerType=0, markerSize=10, thickness=2)
a = cv2.drawContours(a, [poly], 0, 0.8, 1)
a = cv2.drawContours(a, [pred_polys], 0, 1, 1)
plt.imshow(a)
# plt.show()
plt.savefig('src/4.png', bbox_inches='tight', transparent=True, pad_inches=0)
plt.show()
polygon = [(p[0][1], p[0][0]) for p in pred_polys[::-1]]
v = np.array([p[0] + sub_y for p in polygon])
u = np.array([p[1] + sub_x for p in polygon])
# side_l
# v<-----------|o
# | | |
# | ----|----z | side_l
# | | |
# | x \|/
# |------------u
side_l = floorplan.shape[0]
pred_xz = np.concatenate((u[:, np.newaxis] - side_l // 2, side_l // 2 - v[:, np.newaxis]), axis=1)
pred_xz = pred_xz * show_radius / (side_l // 2)
if show:
draw_floorplan(pred_xz, show_radius=show_radius, show=show)
show_process = False
if show_process:
img = np.zeros((floorplan_sub.shape[0], floorplan_sub.shape[1], 3))
for x in x_lst:
cv2.line(img, (x, 0), (x, floorplan_sub.shape[0]), (0, 255, 0), 1)
for y in y_lst:
cv2.line(img, (0, y), (floorplan_sub.shape[1], y), (255, 0, 0), 1)
fig = plt.figure()
plt.axis('off')
ax1 = fig.add_subplot(2, 2, 1)
ax1.imshow(floorplan)
ax3 = fig.add_subplot(2, 2, 2)
ax3.imshow(floorplan_sub)
ax4 = fig.add_subplot(2, 2, 3)
ax4.imshow(img)
ax5 = fig.add_subplot(2, 2, 4)
ax5.imshow(ans)
plt.show()
return pred_xz
if __name__ == '__main__':
from utils.conversion import uv2xyz
pano_img = np.zeros([512, 1024, 3])
corners = np.array([[0.1, 0.7],
[0.4, 0.7],
[0.3, 0.6],
[0.6, 0.6],
[0.8, 0.7]])
xz = uv2xyz(corners)[..., ::2]
draw_floorplan(xz, show=True, marker_color=None, center_color=0.8)
xz = fit_layout(xz)
draw_floorplan(xz, show=True, marker_color=None, center_color=0.8)
|