File size: 9,739 Bytes
88b0dcb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 |
"""
@date: 2021/7/20
@description: reference https://www.redblobgames.com/articles/visibility/
"""
import math
import numpy as np
from functools import cmp_to_key as ctk
from PIL import Image
class Point:
def __init__(self, x: float, y: float):
self.x = x
self.y = y
class EndPoint(Point):
def __init__(self, x: float, y: float, begins_segment: bool = None, segment=None, angle: float = None):
super().__init__(x, y)
self.begins_segment = begins_segment
self.segment = segment
self.angle = angle
class Segment:
def __init__(self, x1: float, y1: float, x2: float, y2: float, d: float = None):
self.p1 = EndPoint(x1, y1)
self.p2 = EndPoint(x2, y2)
self.p1.segment = self
self.p2.segment = self
self.d = d
def calculate_end_point_angles(light_source: Point, segment: Segment) -> None:
x = light_source.x
y = light_source.y
dx = 0.5 * (segment.p1.x + segment.p2.x) - x
dy = 0.5 * (segment.p1.y + segment.p2.y) - y
segment.d = (dx * dx) + (dy * dy)
segment.p1.angle = math.atan2(segment.p1.y - y, segment.p1.x - x)
segment.p2.angle = math.atan2(segment.p2.y - y, segment.p2.x - x)
def set_segment_beginning(segment: Segment) -> None:
d_angle = segment.p2.angle - segment.p1.angle
if d_angle <= -math.pi:
d_angle += 2 * math.pi
if d_angle > math.pi:
d_angle -= 2 * math.pi
segment.p1.begins_segment = d_angle > 0
segment.p2.begins_segment = not segment.p1.begins_segment
def endpoint_compare(point_a: EndPoint, point_b: EndPoint):
if point_a.angle > point_b.angle:
return 1
if point_a.angle < point_b.angle:
return -1
if not point_a.begins_segment and point_b.begins_segment:
return 1
if point_a.begins_segment and not point_b.begins_segment:
return -1
return 0
def polygon_to_segments(polygon: np.array) -> np.array:
segments = []
polygon = np.concatenate((polygon, [polygon[0]]))
for i in range(len(polygon) - 1):
p1 = polygon[i]
p2 = polygon[i + 1]
segments.append([p1, p2])
segments = np.array(segments)
return segments
def segment_in_front_of(segment_a: Segment, segment_b: Segment, relative_point: Point):
def left_of(segment: Segment, point: Point):
cross = (segment.p2.x - segment.p1.x) * (point.y - segment.p1.y) - (segment.p2.y - segment.p1.y) * (
point.x - segment.p1.x)
return cross < 0
def interpolate(point_a: Point, point_b: Point, f: float):
point = Point(x=point_a.x * (1 - f) + point_b.x * f,
y=point_a.y * (1 - f) + point_b.y * f)
return point
a1 = left_of(segment_a, interpolate(segment_b.p1, segment_b.p2, 0.01))
a2 = left_of(segment_a, interpolate(segment_b.p2, segment_b.p1, 0.01))
a3 = left_of(segment_a, relative_point)
b1 = left_of(segment_b, interpolate(segment_a.p1, segment_a.p2, 0.01))
b2 = left_of(segment_b, interpolate(segment_a.p2, segment_a.p1, 0.01))
b3 = left_of(segment_b, relative_point)
if b1 == b2 and not (b2 == b3):
return True
if a1 == a2 and a2 == a3:
return True
if a1 == a2 and not (a2 == a3):
return False
if b1 == b2 and b2 == b3:
return False
return False
def line_intersection(point1: Point, point2: Point, point3: Point, point4: Point):
a = (point4.y - point3.y) * (point2.x - point1.x) - (point4.x - point3.x) * (point2.y - point1.y)
b = (point4.x - point3.x) * (point1.y - point3.y) - (point4.y - point3.y) * (point1.x - point3.x)
assert a != 0 or a == b, "center on polygon, it not support!"
if a == 0:
s = 1
else:
s = b / a
return Point(
point1.x + s * (point2.x - point1.x),
point1.y + s * (point2.y - point1.y)
)
def get_triangle_points(origin: Point, angle1: float, angle2: float, segment: Segment):
p1 = origin
p2 = Point(origin.x + math.cos(angle1), origin.y + math.sin(angle1))
p3 = Point(0, 0)
p4 = Point(0, 0)
if segment:
p3.x = segment.p1.x
p3.y = segment.p1.y
p4.x = segment.p2.x
p4.y = segment.p2.y
else:
p3.x = origin.x + math.cos(angle1) * 2000
p3.y = origin.y + math.sin(angle1) * 2000
p4.x = origin.x + math.cos(angle2) * 2000
p4.y = origin.y + math.sin(angle2) * 2000
# use the endpoint directly when the rays are parallel to segment
if abs(segment.p1.angle - segment.p2.angle) < 1e-6:
return [p4, p3]
# it's maybe generate error coordinate when the rays are parallel to segment
p_begin = line_intersection(p3, p4, p1, p2)
p2.x = origin.x + math.cos(angle2)
p2.y = origin.y + math.sin(angle2)
p_end = line_intersection(p3, p4, p1, p2)
return [p_begin, p_end]
def calc_visible_polygon(center: np.array, polygon: np.array = None, segments: np.array = None, show: bool = False):
if segments is None and polygon is not None:
segments = polygon_to_segments(polygon)
origin = Point(x=center[0], y=center[1])
endpoints = []
for s in segments:
p1 = s[0]
p2 = s[1]
segment = Segment(x1=p1[0], y1=p1[1], x2=p2[0], y2=p2[1])
calculate_end_point_angles(origin, segment)
set_segment_beginning(segment)
endpoints.extend([segment.p1, segment.p2])
open_segments = []
output = []
begin_angle = 0
endpoints = sorted(endpoints, key=ctk(endpoint_compare))
for pas in range(2):
for endpoint in endpoints:
open_segment = open_segments[0] if len(open_segments) else None
if endpoint.begins_segment:
index = 0
segment = open_segments[index] if index < len(open_segments) else None
while segment and segment_in_front_of(endpoint.segment, segment, origin):
index += 1
segment = open_segments[index] if index < len(open_segments) else None
if not segment:
open_segments.append(endpoint.segment)
else:
open_segments.insert(index, endpoint.segment)
else:
if endpoint.segment in open_segments:
open_segments.remove(endpoint.segment)
if open_segment is not (open_segments[0] if len(open_segments) else None):
if pas == 1 and open_segment:
triangle_points = get_triangle_points(origin, begin_angle, endpoint.angle, open_segment)
output.extend(triangle_points)
begin_angle = endpoint.angle
output_polygon = []
# Remove duplicate
for i, p in enumerate(output):
q = output[(i + 1) % len(output)]
if int(p.x * 10000) == int(q.x * 10000) and int(p.y * 10000) == int(q.y * 10000):
continue
output_polygon.append([p.x, p.y])
output_polygon.reverse()
output_polygon = np.array(output_polygon)
if show:
visualization(segments, output_polygon, center)
return output_polygon
def visualization(segments: np.array, output_polygon: np.array, center: np.array, side_l=1000):
"""
:param segments: original segments
:param output_polygon: result polygon
:param center: visibility center
:param side_l: side length of board
:return:
"""
try:
import cv2
import matplotlib.pyplot as plt
except ImportError:
print("visualization need cv2 and matplotlib")
return
offset = np.array([side_l / 2, side_l / 2]) - center
segments = segments + offset
output_polygon = output_polygon + offset
origin = np.array([side_l / 2, side_l / 2])
# +0.5 as board
scale = side_l / 2.5 / np.abs(segments - origin).max()
board = np.zeros((side_l, side_l))
for segment in segments:
segment = (segment - origin) * scale + origin
segment = segment.astype(np.int)
cv2.line(board, tuple(segment[0]), tuple(segment[1]), 0.5, thickness=3)
board = cv2.drawMarker(board, tuple(origin.astype(np.int)), 1, thickness=3)
output_polygon = (output_polygon - origin) * scale + origin
board = cv2.drawContours(board, [output_polygon.astype(np.int)], 0, 1, 3)
board = cv2.drawMarker(board, tuple(origin.astype(np.int)), 1, thickness=3)
plt.axis('off')
plt.imshow(board)
plt.show()
if __name__ == '__main__':
import numpy as np
from dataset.mp3d_dataset import MP3DDataset
from utils.boundary import depth2boundaries
from utils.conversion import uv2xyz, depth2xyz
from visualization.boundary import draw_boundaries
from visualization.floorplan import draw_floorplan, draw_iou_floorplan
mp3d_dataset = MP3DDataset(root_dir='../src/dataset/mp3d', mode='train',
split_list=[['e9zR4mvMWw7', '2224be23a70a475ea6daa55d4c90a91b']])
gt = mp3d_dataset.__getitem__(0)
gt['corners'] = gt['corners'][gt['corners'][..., 0] + gt['corners'][..., 1] != 0] # Take effective corners
img = draw_floorplan(depth2xyz(gt['depth'])[:, ::2], fill_color=[1, 1, 1, 0],
show=True, scale=1, marker_color=[0, 0, 1, 1], side_l=1024)
# img = draw_iou_floorplan(gt_xz=uv2xyz(gt['corners'])[..., ::2],
# dt_xz=calc_visible_polygon(np.array([0, 0]), uv2xyz(gt['corners'])[..., ::2]),
# dt_board_color=[0, 0, 1, 0],
# gt_board_color=[0, 0, 1, 0],
# show=True, side_l=1024)
result = Image.fromarray((img[250: -100, 100:-20] * 255).astype(np.uint8))
result.save('../src/fig/sample3.png')
|