File size: 8,337 Bytes
88b0dcb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
""" 
@Date: 2021/07/28
@description:
"""
import os
import numpy as np
import cv2
import json
from PIL import Image
from utils.conversion import xyz2uv, pixel2uv
from utils.height import calc_ceil_ratio


def read_image(image_path, shape=None):
    if shape is None:
        shape = [512, 1024]
    img = np.array(Image.open(image_path)).astype(np.float32) / 255
    if img.shape[0] != shape[0] or img.shape[1] != shape[1]:
        img = cv2.resize(img, dsize=tuple(shape[::-1]), interpolation=cv2.INTER_AREA)

    return np.array(img)


def read_label(label_path, data_type='MP3D'):

    if data_type == 'MP3D':
        with open(label_path, 'r') as f:
            label = json.load(f)
        point_idx = [one['pointsIdx'][0] for one in label['layoutWalls']['walls']]
        camera_height = label['cameraHeight']
        room_height = label['layoutHeight']
        camera_ceiling_height = room_height - camera_height
        ratio = camera_ceiling_height / camera_height

        xyz = [one['xyz'] for one in label['layoutPoints']['points']]
        assert len(xyz) == len(point_idx), "len(xyz) != len(point_idx)"
        xyz = [xyz[i] for i in point_idx]
        xyz = np.asarray(xyz, dtype=np.float32)
        xyz[:, 2] *= -1
        xyz[:, 1] = camera_height
        corners = xyz2uv(xyz)
    elif data_type == 'Pano_S2D3D':
        with open(label_path, 'r') as f:
            lines = [line for line in f.readlines() if
                     len([c for c in line.split(' ') if c[0].isnumeric()]) > 1]

        corners_list = np.array([line.strip().split() for line in lines], np.float32)
        uv_list = pixel2uv(corners_list)
        ceil_uv = uv_list[::2]
        floor_uv = uv_list[1::2]
        ratio = calc_ceil_ratio([ceil_uv, floor_uv], mode='mean')
        corners = floor_uv
    else:
        return None

    output = {
        'ratio': np.array([ratio], dtype=np.float32),
        'corners': corners,
        'id': os.path.basename(label_path).split('.')[0]
    }
    return output


def move_not_simple_image(data_dir, simple_panos):
    import shutil
    for house_index in os.listdir(data_dir):
        house_path = os.path.join(data_dir, house_index)
        if not os.path.isdir(house_path) or house_index == 'visualization':
            continue

        floor_plan_path = os.path.join(house_path, 'floor_plans')
        if os.path.exists(floor_plan_path):
            print(f'move:{floor_plan_path}')
            dst_floor_plan_path = floor_plan_path.replace('zind', 'zind2')
            os.makedirs(dst_floor_plan_path, exist_ok=True)
            shutil.move(floor_plan_path, dst_floor_plan_path)

        panos_path = os.path.join(house_path, 'panos')
        for pano in os.listdir(panos_path):
            pano_path = os.path.join(panos_path, pano)
            pano_index = '_'.join(pano.split('.')[0].split('_')[-2:])
            if f'{house_index}_{pano_index}' not in simple_panos and os.path.exists(pano_path):
                print(f'move:{pano_path}')
                dst_pano_path = pano_path.replace('zind', 'zind2')
                os.makedirs(os.path.dirname(dst_pano_path), exist_ok=True)
                shutil.move(pano_path, dst_pano_path)


def read_zind(partition_path, simplicity_path, data_dir, mode, is_simple=True,
              layout_type='layout_raw', is_ceiling_flat=False, plan_y=1):
    with open(simplicity_path, 'r') as f:
        simple_tag = json.load(f)
        simple_panos = {}
        for k in simple_tag.keys():
            if not simple_tag[k]:
                continue
            split = k.split('_')
            house_index = split[0]
            pano_index = '_'.join(split[-2:])
            simple_panos[f'{house_index}_{pano_index}'] = True

    # move_not_simple_image(data_dir, simple_panos)

    pano_list = []
    with open(partition_path, 'r') as f1:
        house_list = json.load(f1)[mode]

    for house_index in house_list:
        with open(os.path.join(data_dir, house_index, f"zind_data.json"), 'r') as f2:
            data = json.load(f2)

        panos = []
        merger = data['merger']
        for floor in merger.values():
            for complete_room in floor.values():
                for partial_room in complete_room.values():
                    for pano_index in partial_room:
                        pano = partial_room[pano_index]
                        pano['index'] = pano_index
                        panos.append(pano)

        for pano in panos:
            if layout_type not in pano:
                continue
            pano_index = pano['index']

            if is_simple and f'{house_index}_{pano_index}' not in simple_panos.keys():
                continue

            if is_ceiling_flat and not pano['is_ceiling_flat']:
                continue

            layout = pano[layout_type]
            # corners
            corner_xz = np.array(layout['vertices'])
            corner_xz[..., 0] = -corner_xz[..., 0]
            corner_xyz = np.insert(corner_xz, 1, pano['camera_height'], axis=1)
            corners = xyz2uv(corner_xyz).astype(np.float32)

            # ratio
            ratio = np.array([(pano['ceiling_height'] - pano['camera_height']) / pano['camera_height']], dtype=np.float32)

            # Ours future work: detection window, door, opening
            objects = {
                'windows': [],
                'doors': [],
                'openings': [],
            }
            for label_index, wdo_type in enumerate(["windows", "doors", "openings"]):
                if wdo_type not in layout:
                    continue

                wdo_vertices = np.array(layout[wdo_type])
                if len(wdo_vertices) == 0:
                    continue

                assert len(wdo_vertices) % 3 == 0

                for i in range(0, len(wdo_vertices), 3):
                    # In the Zind dataset, the camera height is 1, and the default camera height in our code is also 1,
                    # so the xyz coordinate here can be used directly
                    # Since we're taking the opposite z-axis, we're changing the order of left and right

                    left_bottom_xyz = np.array(
                        [-wdo_vertices[i + 1][0], -wdo_vertices[i + 2][0], wdo_vertices[i + 1][1]])
                    right_bottom_xyz = np.array(
                        [-wdo_vertices[i][0], -wdo_vertices[i + 2][0], wdo_vertices[i][1]])
                    center_bottom_xyz = (left_bottom_xyz + right_bottom_xyz) / 2

                    center_top_xyz = center_bottom_xyz.copy()
                    center_top_xyz[1] = -wdo_vertices[i + 2][1]

                    center_boundary_xyz = center_bottom_xyz.copy()
                    center_boundary_xyz[1] = plan_y

                    uv = xyz2uv(np.array([left_bottom_xyz, right_bottom_xyz,
                                          center_bottom_xyz, center_top_xyz,
                                          center_boundary_xyz]))

                    left_bottom_uv = uv[0]
                    right_bottom_uv = uv[1]
                    width_u = abs(right_bottom_uv[0] - left_bottom_uv[0])
                    width_u = 1 - width_u if width_u > 0.5 else width_u
                    assert width_u > 0, width_u

                    center_bottom_uv = uv[2]
                    center_top_uv = uv[3]
                    height_v = center_bottom_uv[1] - center_top_uv[1]

                    if height_v < 0:
                        continue

                    center_boundary_uv = uv[4]
                    boundary_v = center_boundary_uv[1] - center_bottom_uv[1] if wdo_type == 'windows' else 0
                    boundary_v = 0 if boundary_v < 0 else boundary_v

                    center_u = center_bottom_uv[0]

                    objects[wdo_type].append({
                        'width_u': width_u,
                        'height_v': height_v,
                        'boundary_v': boundary_v,
                        'center_u': center_u
                    })

            pano_list.append({
                'img_path': os.path.join(data_dir, house_index, pano['image_path']),
                'corners': corners,
                'objects': objects,
                'ratio': ratio,
                'id': f'{house_index}_{pano_index}',
                'is_inside': pano['is_inside']
            })
    return pano_list