File size: 11,219 Bytes
88b0dcb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
"""
@date: 2021/8/4
@description:
"""
import numpy as np
import cv2
import scipy

from evaluation.f1_score import f1_score_2d
from loss import GradLoss
from utils.boundary import corners2boundaries, layout2depth
from utils.conversion import depth2xyz, uv2xyz, get_u, depth2uv, xyz2uv, uv2pixel
from utils.height import calc_ceil_ratio
from evaluation.iou import calc_IoU, calc_Iou_height
from visualization.boundary import draw_boundaries
from visualization.floorplan import draw_iou_floorplan
from visualization.grad import show_grad


def calc_accuracy(dt, gt, visualization=False, h=512):
    visb_iou_2ds = []
    visb_iou_3ds = []
    full_iou_2ds = []
    full_iou_3ds = []
    iou_heights = []

    visb_iou_floodplans = []
    full_iou_floodplans = []
    pano_bds = []

    if 'depth' not in dt.keys():
        dt['depth'] = gt['depth']

    for i in range(len(gt['depth'])):
        # print(i)
        dt_xyz = dt['processed_xyz'][i] if 'processed_xyz' in dt else depth2xyz(np.abs(dt['depth'][i]))
        visb_gt_xyz = depth2xyz(np.abs(gt['depth'][i]))
        corners = gt['corners'][i]
        full_gt_corners = corners[corners[..., 0] + corners[..., 1] != 0]  # Take effective corners
        full_gt_xyz = uv2xyz(full_gt_corners)

        dt_xz = dt_xyz[..., ::2]
        visb_gt_xz = visb_gt_xyz[..., ::2]
        full_gt_xz = full_gt_xyz[..., ::2]

        gt_ratio = gt['ratio'][i][0]

        if 'ratio' not in dt.keys():
            if 'boundary' in dt.keys():
                w = len(dt['boundary'][i])
                boundary = np.clip(dt['boundary'][i], 0.0001, 0.4999)
                depth = np.clip(dt['depth'][i], 0.001, 9999)
                dt_ceil_boundary = np.concatenate([get_u(w, is_np=True)[..., None], boundary], axis=-1)
                dt_floor_boundary = depth2uv(depth)
                dt_ratio = calc_ceil_ratio(boundaries=[dt_ceil_boundary, dt_floor_boundary])
            else:
                dt_ratio = gt_ratio
        else:
            dt_ratio = dt['ratio'][i][0]

        visb_iou_2d, visb_iou_3d = calc_IoU(dt_xz, visb_gt_xz, dt_height=1 + dt_ratio, gt_height=1 + gt_ratio)
        full_iou_2d, full_iou_3d = calc_IoU(dt_xz, full_gt_xz, dt_height=1 + dt_ratio, gt_height=1 + gt_ratio)
        iou_height = calc_Iou_height(dt_height=1 + dt_ratio, gt_height=1 + gt_ratio)

        visb_iou_2ds.append(visb_iou_2d)
        visb_iou_3ds.append(visb_iou_3d)
        full_iou_2ds.append(full_iou_2d)
        full_iou_3ds.append(full_iou_3d)
        iou_heights.append(iou_height)

        if visualization:
            pano_img = cv2.resize(gt['image'][i].transpose(1, 2, 0), (h*2, h))
            # visb_iou_floodplans.append(draw_iou_floorplan(dt_xz, visb_gt_xz, iou_2d=visb_iou_2d, iou_3d=visb_iou_3d, side_l=h))
            # full_iou_floodplans.append(draw_iou_floorplan(dt_xz, full_gt_xz, iou_2d=full_iou_2d, iou_3d=full_iou_3d, side_l=h))
            visb_iou_floodplans.append(draw_iou_floorplan(dt_xz, visb_gt_xz, side_l=h))
            full_iou_floodplans.append(draw_iou_floorplan(dt_xz, full_gt_xz, side_l=h))
            gt_boundaries = corners2boundaries(gt_ratio, corners_xyz=full_gt_xyz, step=None, length=1024, visible=False)
            dt_boundaries = corners2boundaries(dt_ratio, corners_xyz=dt_xyz, step=None, visible=False,
                                               length=1024)#visb_gt_xyz.shape[0] if dt_xyz.shape[0] != visb_gt_xyz.shape[0] else None)

            pano_bd = draw_boundaries(pano_img, boundary_list=gt_boundaries, boundary_color=[0, 0, 1])
            pano_bd = draw_boundaries(pano_bd, boundary_list=dt_boundaries, boundary_color=[0, 1, 0])
            pano_bds.append(pano_bd)

    visb_iou_2d = np.array(visb_iou_2ds).mean()
    visb_iou_3d = np.array(visb_iou_3ds).mean()
    full_iou_2d = np.array(full_iou_2ds).mean()
    full_iou_3d = np.array(full_iou_3ds).mean()
    iou_height = np.array(iou_heights).mean()

    if visualization:
        visb_iou_floodplans = np.array(visb_iou_floodplans).transpose(0, 3, 1, 2)  # NCHW
        full_iou_floodplans = np.array(full_iou_floodplans).transpose(0, 3, 1, 2)  # NCHW
        pano_bds = np.array(pano_bds).transpose(0, 3, 1, 2)
    return [visb_iou_2d, visb_iou_3d, visb_iou_floodplans],\
           [full_iou_2d, full_iou_3d, full_iou_floodplans], iou_height, pano_bds, full_iou_2ds


def calc_ce(dt, gt):
    w = 1024
    h = 512
    ce_s = []
    for i in range(len(gt['corners'])):
        floor_gt_corners = gt['corners'][i]
        # Take effective corners
        floor_gt_corners = floor_gt_corners[floor_gt_corners[..., 0] + floor_gt_corners[..., 1] != 0]
        floor_gt_corners = np.roll(floor_gt_corners, -np.argmin(floor_gt_corners[..., 0]), 0)
        gt_ratio = gt['ratio'][i][0]
        ceil_gt_corners = corners2boundaries(gt_ratio, corners_uv=floor_gt_corners, step=None)[1]
        gt_corners = np.concatenate((floor_gt_corners, ceil_gt_corners))
        gt_corners = uv2pixel(gt_corners, w, h)

        floor_dt_corners = xyz2uv(dt['processed_xyz'][i])
        floor_dt_corners = np.roll(floor_dt_corners, -np.argmin(floor_dt_corners[..., 0]), 0)
        dt_ratio = dt['ratio'][i][0]
        ceil_dt_corners = corners2boundaries(dt_ratio, corners_uv=floor_dt_corners, step=None)[1]
        dt_corners = np.concatenate((floor_dt_corners, ceil_dt_corners))
        dt_corners = uv2pixel(dt_corners, w, h)

        mse = np.sqrt(((gt_corners - dt_corners) ** 2).sum(1)).mean()
        ce = 100 * mse / np.sqrt(w ** 2 + h ** 2)
        ce_s.append(ce)

    return np.array(ce_s).mean()


def calc_pe(dt, gt):
    w = 1024
    h = 512
    pe_s = []
    for i in range(len(gt['corners'])):
        floor_gt_corners = gt['corners'][i]
        # Take effective corners
        floor_gt_corners = floor_gt_corners[floor_gt_corners[..., 0] + floor_gt_corners[..., 1] != 0]
        floor_gt_corners = np.roll(floor_gt_corners, -np.argmin(floor_gt_corners[..., 0]), 0)
        gt_ratio = gt['ratio'][i][0]
        gt_floor_boundary, gt_ceil_boundary = corners2boundaries(gt_ratio, corners_uv=floor_gt_corners, length=w)
        gt_floor_boundary = uv2pixel(gt_floor_boundary, w, h)
        gt_ceil_boundary = uv2pixel(gt_ceil_boundary, w, h)

        floor_dt_corners = xyz2uv(dt['processed_xyz'][i])
        floor_dt_corners = np.roll(floor_dt_corners, -np.argmin(floor_dt_corners[..., 0]), 0)
        dt_ratio = dt['ratio'][i][0]
        dt_floor_boundary, dt_ceil_boundary = corners2boundaries(dt_ratio, corners_uv=floor_dt_corners, length=w)
        dt_floor_boundary = uv2pixel(dt_floor_boundary, w, h)
        dt_ceil_boundary = uv2pixel(dt_ceil_boundary, w, h)

        gt_surface = np.zeros((h, w), dtype=np.int32)
        gt_surface[gt_ceil_boundary[..., 1], np.arange(w)] = 1
        gt_surface[gt_floor_boundary[..., 1], np.arange(w)] = 1
        gt_surface = np.cumsum(gt_surface, axis=0)

        dt_surface = np.zeros((h, w), dtype=np.int32)
        dt_surface[dt_ceil_boundary[..., 1], np.arange(w)] = 1
        dt_surface[dt_floor_boundary[..., 1], np.arange(w)] = 1
        dt_surface = np.cumsum(dt_surface, axis=0)

        pe = 100 * (dt_surface != gt_surface).sum() / (h * w)
        pe_s.append(pe)
    return np.array(pe_s).mean()


def calc_rmse_delta_1(dt, gt):
    rmse_s = []
    delta_1_s = []
    for i in range(len(gt['depth'])):
        gt_boundaries = corners2boundaries(gt['ratio'][i], corners_xyz=depth2xyz(gt['depth'][i]), step=None,
                                           visible=False)
        dt_xyz = dt['processed_xyz'][i] if 'processed_xyz' in dt else depth2xyz(np.abs(dt['depth'][i]))

        dt_boundaries = corners2boundaries(dt['ratio'][i], corners_xyz=dt_xyz, step=None,
                                           length=256 if 'processed_xyz' in dt else None,
                                           visible=True if 'processed_xyz' in dt else False)
        gt_layout_depth = layout2depth(gt_boundaries, show=False)
        dt_layout_depth = layout2depth(dt_boundaries, show=False)

        rmse = ((gt_layout_depth - dt_layout_depth) ** 2).mean() ** 0.5
        threshold = np.maximum(gt_layout_depth / dt_layout_depth, dt_layout_depth / gt_layout_depth)
        delta_1 = (threshold < 1.25).mean()
        rmse_s.append(rmse)
        delta_1_s.append(delta_1)
    return np.array(rmse_s).mean(), np.array(delta_1_s).mean()


def calc_f1_score(dt, gt, threshold=10):
    w = 1024
    h = 512
    f1_s = []
    precision_s = []
    recall_s = []
    for i in range(len(gt['corners'])):
        floor_gt_corners = gt['corners'][i]
        # Take effective corners
        floor_gt_corners = floor_gt_corners[floor_gt_corners[..., 0] + floor_gt_corners[..., 1] != 0]
        floor_gt_corners = np.roll(floor_gt_corners, -np.argmin(floor_gt_corners[..., 0]), 0)
        gt_ratio = gt['ratio'][i][0]
        ceil_gt_corners = corners2boundaries(gt_ratio, corners_uv=floor_gt_corners, step=None)[1]
        gt_corners = np.concatenate((floor_gt_corners, ceil_gt_corners))
        gt_corners = uv2pixel(gt_corners, w, h)

        floor_dt_corners = xyz2uv(dt['processed_xyz'][i])
        floor_dt_corners = np.roll(floor_dt_corners, -np.argmin(floor_dt_corners[..., 0]), 0)
        dt_ratio = dt['ratio'][i][0]
        ceil_dt_corners = corners2boundaries(dt_ratio, corners_uv=floor_dt_corners, step=None)[1]
        dt_corners = np.concatenate((floor_dt_corners, ceil_dt_corners))
        dt_corners = uv2pixel(dt_corners, w, h)

        Fs, Ps, Rs = f1_score_2d(gt_corners, dt_corners, [threshold])
        f1_s.append(Fs[0])
        precision_s.append(Ps[0])
        recall_s.append(Rs[0])

    return np.array(f1_s).mean(), np.array(precision_s).mean(), np.array(recall_s).mean()


def show_heat_map(dt, gt, vis_w=1024):
    dt_heat_map = dt['corner_heat_map'].detach().cpu().numpy()
    gt_heat_map = gt['corner_heat_map'].detach().cpu().numpy()
    dt_heat_map_imgs = []
    gt_heat_map_imgs = []
    for i in range(len(gt['depth'])):
        dt_heat_map_img = dt_heat_map[..., np.newaxis].repeat(3, axis=-1).repeat(20, axis=0)
        gt_heat_map_img = gt_heat_map[..., np.newaxis].repeat(3, axis=-1).repeat(20, axis=0)
        dt_heat_map_imgs.append(cv2.resize(dt_heat_map_img, (vis_w, dt_heat_map_img.shape[0])).transpose(2, 0, 1))
        gt_heat_map_imgs.append(cv2.resize(gt_heat_map_img, (vis_w, dt_heat_map_img.shape[0])).transpose(2, 0, 1))
    return dt_heat_map_imgs, gt_heat_map_imgs


def show_depth_normal_grad(dt, gt, device, vis_w=1024):
    grad_conv = GradLoss().to(device).grad_conv
    gt_grad_imgs = []
    dt_grad_imgs = []

    if 'depth' not in dt.keys():
        dt['depth'] = gt['depth']

    if vis_w == 1024:
        h = 5
    else:
        h = int(vis_w / (12 * 10))

    for i in range(len(gt['depth'])):
        gt_grad_img = show_grad(gt['depth'][i], grad_conv, h)
        dt_grad_img = show_grad(dt['depth'][i], grad_conv, h)
        vis_h = dt_grad_img.shape[0] * (vis_w // dt_grad_img.shape[1])
        gt_grad_imgs.append(cv2.resize(gt_grad_img, (vis_w, vis_h), interpolation=cv2.INTER_NEAREST).transpose(2, 0, 1))
        dt_grad_imgs.append(cv2.resize(dt_grad_img, (vis_w, vis_h), interpolation=cv2.INTER_NEAREST).transpose(2, 0, 1))

    return gt_grad_imgs, dt_grad_imgs