File size: 9,755 Bytes
88b0dcb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f25fa8
88b0dcb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a5a934b
88b0dcb
 
 
 
a5a934b
88b0dcb
 
 
 
 
 
a5a934b
88b0dcb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
""" 
@date: 2021/06/19
@description:
Specification of 4 coordinate systems:
Pixel coordinates (used in panoramic images), the range is related to the image size,
generally converted to UV coordinates first, the first is horizontal coordinates,
increasing to the right, the second is column coordinates, increasing down

Uv coordinates (used in panoramic images), the range is [0~1], the upper left corner is the origin,
u is the abscissa and increases to the right, V is the column coordinate and increases to the right

Longitude and latitude coordinates (spherical), the range of longitude lon is [-pi~ PI],
and the range of dimension is [-pi/2~ PI /2]. The center of the panorama is the origin,
and the longitude increases to the right and the dimension increases to the down

Xyz coordinate (used in 3-dimensional space, of course,
it can also represent longitude and latitude coordinates on the sphere).
If on the sphere, the coordinate mode length is 1, when y is projected to the height of the camera,
the real position information of space points will be obtained

Correspondence between longitude and latitude coordinates and xyz coordinates:
                     | -pi/2
                     |
     lef   _ _ _ _ _ |_ _ _ _ _
     -pi /           |          \
     pi |            - - - - -  -\ - z 0 mid
 right  \_ _ _ _ _ /_|_ _ _ _ _ _/
                /    |
               /     |
            x/       | y pi/2
"""

import numpy as np
import torch
import functools


@functools.lru_cache()
def get_u(w, is_np, b=None):
    u = pixel2uv(np.array(range(w)) if is_np else torch.arange(0, w), w=w, axis=0)
    if b is not None:
        u = u[np.newaxis].repeat(b) if is_np else u.repeat(b, 1)
    return u


@functools.lru_cache()
def get_lon(w, is_np, b=None):
    lon = pixel2lonlat(np.array(range(w)) if is_np else torch.arange(0, w), w=w, axis=0)
    if b is not None:
        lon = lon[np.newaxis].repeat(b, axis=0) if is_np else lon.repeat(b, 1)
    return lon


def pixel2uv(pixel, w=1024, h=512, axis=None):
    pixel = pixel.astype(np.float32) if isinstance(pixel, np.ndarray) else pixel.float()
    # +0.5 will make left/right and up/down coordinates symmetric
    if axis is None:
        u = (pixel[..., 0:1] + 0.5) / w
        v = (pixel[..., 1:] + 0.5) / h
    elif axis == 0:
        u = (pixel + 0.5) / (w * 1.0)
        return u
    elif axis == 1:
        v = (pixel + 0.5) / (h * 1.0)
        return v
    else:
        assert False, "axis error"

    lst = [u, v]
    uv = np.concatenate(lst, axis=-1) if isinstance(pixel, np.ndarray) else torch.cat(lst, dim=-1)
    return uv


def pixel2lonlat(pixel, w=1024, h=512, axis=None):
    uv = pixel2uv(pixel, w, h, axis)
    lonlat = uv2lonlat(uv, axis)
    return lonlat


def pixel2xyz(pixel, w=1024, h=512):
    lonlat = pixel2lonlat(pixel, w, h)
    xyz = lonlat2xyz(lonlat)
    return xyz


def uv2lonlat(uv, axis=None):
    if axis is None:
        lon = (uv[..., 0:1] - 0.5) * 2 * np.pi
        lat = (uv[..., 1:] - 0.5) * np.pi
    elif axis == 0:
        lon = (uv - 0.5) * 2 * np.pi
        return lon
    elif axis == 1:
        lat = (uv - 0.5) * np.pi
        return lat
    else:
        assert False, "axis error"

    lst = [lon, lat]
    lonlat = np.concatenate(lst, axis=-1) if isinstance(uv, np.ndarray) else torch.cat(lst, dim=-1)
    return lonlat


def uv2xyz(uv, plan_y=None, spherical=False):
    lonlat = uv2lonlat(uv)
    xyz = lonlat2xyz(lonlat)
    if spherical:
        # Projection onto the sphere
        return xyz

    if plan_y is None:
        from utils.boundary import boundary_type
        plan_y = boundary_type(uv)
    # Projection onto the specified plane
    xyz = xyz * (plan_y / xyz[..., 1])[..., None]

    return xyz


def lonlat2xyz(lonlat, plan_y=None):
    lon = lonlat[..., 0:1]
    lat = lonlat[..., 1:]
    cos = np.cos if isinstance(lonlat, np.ndarray) else torch.cos
    sin = np.sin if isinstance(lonlat, np.ndarray) else torch.sin
    x = cos(lat) * sin(lon)
    y = sin(lat)
    z = cos(lat) * cos(lon)
    lst = [x, y, z]
    xyz = np.concatenate(lst, axis=-1) if isinstance(lonlat, np.ndarray) else torch.cat(lst, dim=-1)

    if plan_y is not None:
        xyz = xyz * (plan_y / xyz[..., 1])[..., None]

    return xyz


#####################


def xyz2lonlat(xyz):
    atan2 = np.arctan2 if isinstance(xyz, np.ndarray) else torch.atan2
    asin = np.arcsin if isinstance(xyz, np.ndarray) else torch.asin
    norm = np.linalg.norm(xyz, axis=-1) if isinstance(xyz, np.ndarray) else torch.norm(xyz, p=2, dim=-1)
    xyz_norm = xyz / norm[..., None]
    x = xyz_norm[..., 0:1]
    y = xyz_norm[..., 1:2]
    z = xyz_norm[..., 2:]
    lon = atan2(x, z)
    lat = asin(y)
    lst = [lon, lat]
    lonlat = np.concatenate(lst, axis=-1) if isinstance(xyz, np.ndarray) else torch.cat(lst, dim=-1)
    return lonlat


def xyz2uv(xyz):
    lonlat = xyz2lonlat(xyz)
    uv = lonlat2uv(lonlat)
    return uv


def xyz2pixel(xyz, w=1024, h=512):
    uv = xyz2uv(xyz)
    pixel = uv2pixel(uv, w, h)
    return pixel


def lonlat2uv(lonlat, axis=None):
    if axis is None:
        u = lonlat[..., 0:1] / (2 * np.pi) + 0.5
        v = lonlat[..., 1:] / np.pi + 0.5
    elif axis == 0:
        u = lonlat / (2 * np.pi) + 0.5
        return u
    elif axis == 1:
        v = lonlat / np.pi + 0.5
        return v
    else:
        assert False, "axis error"

    lst = [u, v]
    uv = np.concatenate(lst, axis=-1) if isinstance(lonlat, np.ndarray) else torch.cat(lst, dim=-1)
    return uv


def lonlat2pixel(lonlat, w=1024, h=512, axis=None, need_round=True):
    uv = lonlat2uv(lonlat, axis)
    pixel = uv2pixel(uv, w, h, axis, need_round)
    return pixel


def uv2pixel(uv, w=1024, h=512, axis=None, need_round=True):
    """
    :param uv: [[u1, v1], [u2, v2] ...]
    :param w: width of panorama image
    :param h: height of panorama image
    :param axis: sometimes the input data is only u(axis =0) or only v(axis=1)
    :param need_round:
    :return:
    """
    if axis is None:
        pu = uv[..., 0:1] * w - 0.5
        pv = uv[..., 1:] * h - 0.5
    elif axis == 0:
        pu = uv * w - 0.5
        if need_round:
            pu = pu.round().astype(np.int32) if isinstance(uv, np.ndarray) else pu.round().int()
        return pu
    elif axis == 1:
        pv = uv * h - 0.5
        if need_round:
            pv = pv.round().astype(np.int32) if isinstance(uv, np.ndarray) else pv.round().int()
        return pv
    else:
        assert False, "axis error"

    lst = [pu, pv]
    if need_round:
        pixel = np.concatenate(lst, axis=-1).round().astype(np.int32) if isinstance(uv, np.ndarray) else torch.cat(lst,
                                                                                                                 dim=-1).round().int()
    else:
        pixel = np.concatenate(lst, axis=-1) if isinstance(uv, np.ndarray) else torch.cat(lst, dim=-1)
    pixel[..., 0] = pixel[..., 0] % w
    pixel[..., 1] = pixel[..., 1] % h

    return pixel


#####################


def xyz2depth(xyz, plan_y=1):
    """
    :param xyz:
    :param plan_y:
    :return:
    """
    xyz = xyz * (plan_y / xyz[..., 1])[..., None]
    xz = xyz[..., ::2]
    depth = np.linalg.norm(xz, axis=-1) if isinstance(xz, np.ndarray) else torch.norm(xz, dim=-1)
    return depth


def uv2depth(uv, plan_y=None):
    if plan_y is None:
        from utils.boundary import boundary_type
        plan_y = boundary_type(uv)

    xyz = uv2xyz(uv, plan_y)
    depth = xyz2depth(xyz, plan_y)
    return depth


def lonlat2depth(lonlat, plan_y=None):
    if plan_y is None:
        from utils.boundary import boundary_type
        plan_y = boundary_type(lonlat2uv(lonlat))

    xyz = lonlat2xyz(lonlat, plan_y)
    depth = xyz2depth(xyz, plan_y)
    return depth


def depth2xyz(depth, plan_y=1):
    """
    :param depth: [patch_num] or [b, patch_num]
    :param plan_y:
    :return:
    """
    is_np = isinstance(depth, np.ndarray)
    w = depth.shape[-1]

    lon = get_lon(w, is_np, b=depth.shape[0] if len(depth.shape) == 2 else None)
    if not is_np:
        lon = lon.to(depth.device)

    cos = np.cos if is_np else torch.cos
    sin = np.sin if is_np else torch.sin
    # polar covert to cartesian
    if len(depth.shape) == 2:
        b = depth.shape[0]
        xyz = np.zeros((b, w, 3)) if is_np else torch.zeros((b, w, 3))
    else:
        xyz = np.zeros((w, 3)) if is_np else torch.zeros((w, 3))

    if not is_np:
        xyz = xyz.to(depth.device)

    xyz[..., 0] = depth * sin(lon)
    xyz[..., 1] = plan_y
    xyz[..., 2] = depth * cos(lon)
    return xyz


def depth2uv(depth, plan_y=1):
    xyz = depth2xyz(depth, plan_y)
    uv = xyz2uv(xyz)
    return uv


def depth2pixel(depth, w=1024, h=512, need_round=True, plan_y=1):
    uv = depth2uv(depth, plan_y)
    pixel = uv2pixel(uv, w, h, need_round=need_round)
    return pixel


if __name__ == '__main__':
    a = np.array([[0.5, 1, 0.5]])
    a = xyz2pixel(a)
    print(a)


if __name__ == '__main__1':
    np.set_printoptions(suppress=True)

    a = np.array([[0, 0], [1023, 511]])
    a = pixel2xyz(a)
    a = xyz2pixel(a)
    print(a)

    ###########
    a = torch.tensor([[0, 0], [1023, 511]])
    a = pixel2xyz(a)
    a = xyz2pixel(a)
    print(a)

    ###########
    u = np.array([0, 256, 512, 1023])
    lon = pixel2lonlat(u, axis=0)
    u = lonlat2pixel(lon, axis=0)
    print(u)

    u = torch.tensor([0, 256, 512, 1023])
    lon = pixel2lonlat(u, axis=0)
    u = lonlat2pixel(lon, axis=0)
    print(u)

    ###########
    v = np.array([0, 256, 511])
    lat = pixel2lonlat(v, axis=1)
    v = lonlat2pixel(lat, axis=1)
    print(v)

    v = torch.tensor([0, 256, 511])
    lat = pixel2lonlat(v, axis=1)
    v = lonlat2pixel(lat, axis=1)
    print(v)