zhigangjiang's picture
no message
88b0dcb
raw
history blame
8.34 kB
"""
@Date: 2021/07/28
@description:
"""
import os
import numpy as np
import cv2
import json
from PIL import Image
from utils.conversion import xyz2uv, pixel2uv
from utils.height import calc_ceil_ratio
def read_image(image_path, shape=None):
if shape is None:
shape = [512, 1024]
img = np.array(Image.open(image_path)).astype(np.float32) / 255
if img.shape[0] != shape[0] or img.shape[1] != shape[1]:
img = cv2.resize(img, dsize=tuple(shape[::-1]), interpolation=cv2.INTER_AREA)
return np.array(img)
def read_label(label_path, data_type='MP3D'):
if data_type == 'MP3D':
with open(label_path, 'r') as f:
label = json.load(f)
point_idx = [one['pointsIdx'][0] for one in label['layoutWalls']['walls']]
camera_height = label['cameraHeight']
room_height = label['layoutHeight']
camera_ceiling_height = room_height - camera_height
ratio = camera_ceiling_height / camera_height
xyz = [one['xyz'] for one in label['layoutPoints']['points']]
assert len(xyz) == len(point_idx), "len(xyz) != len(point_idx)"
xyz = [xyz[i] for i in point_idx]
xyz = np.asarray(xyz, dtype=np.float32)
xyz[:, 2] *= -1
xyz[:, 1] = camera_height
corners = xyz2uv(xyz)
elif data_type == 'Pano_S2D3D':
with open(label_path, 'r') as f:
lines = [line for line in f.readlines() if
len([c for c in line.split(' ') if c[0].isnumeric()]) > 1]
corners_list = np.array([line.strip().split() for line in lines], np.float32)
uv_list = pixel2uv(corners_list)
ceil_uv = uv_list[::2]
floor_uv = uv_list[1::2]
ratio = calc_ceil_ratio([ceil_uv, floor_uv], mode='mean')
corners = floor_uv
else:
return None
output = {
'ratio': np.array([ratio], dtype=np.float32),
'corners': corners,
'id': os.path.basename(label_path).split('.')[0]
}
return output
def move_not_simple_image(data_dir, simple_panos):
import shutil
for house_index in os.listdir(data_dir):
house_path = os.path.join(data_dir, house_index)
if not os.path.isdir(house_path) or house_index == 'visualization':
continue
floor_plan_path = os.path.join(house_path, 'floor_plans')
if os.path.exists(floor_plan_path):
print(f'move:{floor_plan_path}')
dst_floor_plan_path = floor_plan_path.replace('zind', 'zind2')
os.makedirs(dst_floor_plan_path, exist_ok=True)
shutil.move(floor_plan_path, dst_floor_plan_path)
panos_path = os.path.join(house_path, 'panos')
for pano in os.listdir(panos_path):
pano_path = os.path.join(panos_path, pano)
pano_index = '_'.join(pano.split('.')[0].split('_')[-2:])
if f'{house_index}_{pano_index}' not in simple_panos and os.path.exists(pano_path):
print(f'move:{pano_path}')
dst_pano_path = pano_path.replace('zind', 'zind2')
os.makedirs(os.path.dirname(dst_pano_path), exist_ok=True)
shutil.move(pano_path, dst_pano_path)
def read_zind(partition_path, simplicity_path, data_dir, mode, is_simple=True,
layout_type='layout_raw', is_ceiling_flat=False, plan_y=1):
with open(simplicity_path, 'r') as f:
simple_tag = json.load(f)
simple_panos = {}
for k in simple_tag.keys():
if not simple_tag[k]:
continue
split = k.split('_')
house_index = split[0]
pano_index = '_'.join(split[-2:])
simple_panos[f'{house_index}_{pano_index}'] = True
# move_not_simple_image(data_dir, simple_panos)
pano_list = []
with open(partition_path, 'r') as f1:
house_list = json.load(f1)[mode]
for house_index in house_list:
with open(os.path.join(data_dir, house_index, f"zind_data.json"), 'r') as f2:
data = json.load(f2)
panos = []
merger = data['merger']
for floor in merger.values():
for complete_room in floor.values():
for partial_room in complete_room.values():
for pano_index in partial_room:
pano = partial_room[pano_index]
pano['index'] = pano_index
panos.append(pano)
for pano in panos:
if layout_type not in pano:
continue
pano_index = pano['index']
if is_simple and f'{house_index}_{pano_index}' not in simple_panos.keys():
continue
if is_ceiling_flat and not pano['is_ceiling_flat']:
continue
layout = pano[layout_type]
# corners
corner_xz = np.array(layout['vertices'])
corner_xz[..., 0] = -corner_xz[..., 0]
corner_xyz = np.insert(corner_xz, 1, pano['camera_height'], axis=1)
corners = xyz2uv(corner_xyz).astype(np.float32)
# ratio
ratio = np.array([(pano['ceiling_height'] - pano['camera_height']) / pano['camera_height']], dtype=np.float32)
# Ours future work: detection window, door, opening
objects = {
'windows': [],
'doors': [],
'openings': [],
}
for label_index, wdo_type in enumerate(["windows", "doors", "openings"]):
if wdo_type not in layout:
continue
wdo_vertices = np.array(layout[wdo_type])
if len(wdo_vertices) == 0:
continue
assert len(wdo_vertices) % 3 == 0
for i in range(0, len(wdo_vertices), 3):
# In the Zind dataset, the camera height is 1, and the default camera height in our code is also 1,
# so the xyz coordinate here can be used directly
# Since we're taking the opposite z-axis, we're changing the order of left and right
left_bottom_xyz = np.array(
[-wdo_vertices[i + 1][0], -wdo_vertices[i + 2][0], wdo_vertices[i + 1][1]])
right_bottom_xyz = np.array(
[-wdo_vertices[i][0], -wdo_vertices[i + 2][0], wdo_vertices[i][1]])
center_bottom_xyz = (left_bottom_xyz + right_bottom_xyz) / 2
center_top_xyz = center_bottom_xyz.copy()
center_top_xyz[1] = -wdo_vertices[i + 2][1]
center_boundary_xyz = center_bottom_xyz.copy()
center_boundary_xyz[1] = plan_y
uv = xyz2uv(np.array([left_bottom_xyz, right_bottom_xyz,
center_bottom_xyz, center_top_xyz,
center_boundary_xyz]))
left_bottom_uv = uv[0]
right_bottom_uv = uv[1]
width_u = abs(right_bottom_uv[0] - left_bottom_uv[0])
width_u = 1 - width_u if width_u > 0.5 else width_u
assert width_u > 0, width_u
center_bottom_uv = uv[2]
center_top_uv = uv[3]
height_v = center_bottom_uv[1] - center_top_uv[1]
if height_v < 0:
continue
center_boundary_uv = uv[4]
boundary_v = center_boundary_uv[1] - center_bottom_uv[1] if wdo_type == 'windows' else 0
boundary_v = 0 if boundary_v < 0 else boundary_v
center_u = center_bottom_uv[0]
objects[wdo_type].append({
'width_u': width_u,
'height_v': height_v,
'boundary_v': boundary_v,
'center_u': center_u
})
pano_list.append({
'img_path': os.path.join(data_dir, house_index, pano['image_path']),
'corners': corners,
'objects': objects,
'ratio': ratio,
'id': f'{house_index}_{pano_index}',
'is_inside': pano['is_inside']
})
return pano_list