|
""" |
|
@date: 2021/6/25 |
|
@description: |
|
""" |
|
import os |
|
import json |
|
|
|
from dataset.communal.read import read_image, read_label |
|
from dataset.communal.base_dataset import BaseDataset |
|
from utils.logger import get_logger |
|
|
|
|
|
class MP3DDataset(BaseDataset): |
|
def __init__(self, root_dir, mode, shape=None, max_wall_num=0, aug=None, camera_height=1.6, logger=None, |
|
split_list=None, patch_num=256, keys=None, for_test_index=None): |
|
super().__init__(mode, shape, max_wall_num, aug, camera_height, patch_num, keys) |
|
|
|
if logger is None: |
|
logger = get_logger() |
|
self.root_dir = root_dir |
|
|
|
split_dir = os.path.join(root_dir, 'split') |
|
label_dir = os.path.join(root_dir, 'label') |
|
img_dir = os.path.join(root_dir, 'image') |
|
|
|
if split_list is None: |
|
with open(os.path.join(split_dir, f"{mode}.txt"), 'r') as f: |
|
split_list = [x.rstrip().split() for x in f] |
|
|
|
split_list.sort() |
|
if for_test_index is not None: |
|
split_list = split_list[:for_test_index] |
|
|
|
self.data = [] |
|
invalid_num = 0 |
|
for name in split_list: |
|
name = "_".join(name) |
|
img_path = os.path.join(img_dir, f"{name}.png") |
|
label_path = os.path.join(label_dir, f"{name}.json") |
|
|
|
if not os.path.exists(img_path): |
|
logger.warning(f"{img_path} not exists") |
|
invalid_num += 1 |
|
continue |
|
if not os.path.exists(label_path): |
|
logger.warning(f"{label_path} not exists") |
|
invalid_num += 1 |
|
continue |
|
|
|
with open(label_path, 'r') as f: |
|
label = json.load(f) |
|
|
|
if self.max_wall_num >= 10: |
|
if label['layoutWalls']['num'] < self.max_wall_num: |
|
invalid_num += 1 |
|
continue |
|
elif self.max_wall_num != 0 and label['layoutWalls']['num'] != self.max_wall_num: |
|
invalid_num += 1 |
|
continue |
|
|
|
|
|
self.data.append([img_path, label_path]) |
|
|
|
logger.info( |
|
f"Build dataset mode: {self.mode} max_wall_num: {self.max_wall_num} valid: {len(self.data)} invalid: {invalid_num}") |
|
|
|
def __getitem__(self, idx): |
|
rgb_path, label_path = self.data[idx] |
|
label = read_label(label_path, data_type='MP3D') |
|
image = read_image(rgb_path, self.shape) |
|
output = self.process_data(label, image, self.patch_num) |
|
return output |
|
|
|
|
|
if __name__ == "__main__": |
|
import numpy as np |
|
from PIL import Image |
|
|
|
from tqdm import tqdm |
|
from visualization.boundary import draw_boundaries |
|
from visualization.floorplan import draw_floorplan |
|
from utils.boundary import depth2boundaries |
|
from utils.conversion import uv2xyz |
|
|
|
modes = ['test', 'val'] |
|
for i in range(1): |
|
for mode in modes: |
|
print(mode) |
|
mp3d_dataset = MP3DDataset(root_dir='../src/dataset/mp3d', mode=mode, aug={ |
|
'STRETCH': True, |
|
'ROTATE': True, |
|
'FLIP': True, |
|
'GAMMA': True |
|
}) |
|
save_dir = f'../src/dataset/mp3d/visualization/{mode}' |
|
if not os.path.isdir(save_dir): |
|
os.makedirs(save_dir) |
|
|
|
bar = tqdm(mp3d_dataset, ncols=100) |
|
for data in bar: |
|
bar.set_description(f"Processing {data['id']}") |
|
boundary_list = depth2boundaries(data['ratio'], data['depth'], step=None) |
|
pano_img = draw_boundaries(data['image'].transpose(1, 2, 0), boundary_list=boundary_list, show=True) |
|
Image.fromarray((pano_img * 255).astype(np.uint8)).save( |
|
os.path.join(save_dir, f"{data['id']}_boundary.png")) |
|
|
|
floorplan = draw_floorplan(uv2xyz(boundary_list[0])[..., ::2], show=True, |
|
marker_color=None, center_color=0.8, show_radius=None) |
|
Image.fromarray((floorplan.squeeze() * 255).astype(np.uint8)).save( |
|
os.path.join(save_dir, f"{data['id']}_floorplan.png")) |
|
|