zhigangjiang's picture
no message
88b0dcb
"""
@Date: 2021/09/22
@description:
"""
import os
import json
import math
import numpy as np
from dataset.communal.read import read_image, read_label, read_zind
from dataset.communal.base_dataset import BaseDataset
from utils.logger import get_logger
from preprocessing.filter import filter_center, filter_boundary, filter_self_intersection
from utils.boundary import calc_rotation
class ZindDataset(BaseDataset):
def __init__(self, root_dir, mode, shape=None, max_wall_num=0, aug=None, camera_height=1.6, logger=None,
split_list=None, patch_num=256, keys=None, for_test_index=None,
is_simple=True, is_ceiling_flat=False, vp_align=False):
# if keys is None:
# keys = ['image', 'depth', 'ratio', 'id', 'corners', 'corner_heat_map', 'object']
super().__init__(mode, shape, max_wall_num, aug, camera_height, patch_num, keys)
if logger is None:
logger = get_logger()
self.root_dir = root_dir
self.vp_align = vp_align
data_dir = os.path.join(root_dir)
img_dir = os.path.join(root_dir, 'image')
pano_list = read_zind(partition_path=os.path.join(data_dir, f"zind_partition.json"),
simplicity_path=os.path.join(data_dir, f"room_shape_simplicity_labels.json"),
data_dir=data_dir, mode=mode, is_simple=is_simple, is_ceiling_flat=is_ceiling_flat)
if for_test_index is not None:
pano_list = pano_list[:for_test_index]
if split_list:
pano_list = [pano for pano in pano_list if pano['id'] in split_list]
self.data = []
invalid_num = 0
for pano in pano_list:
if not os.path.exists(pano['img_path']):
logger.warning(f"{pano['img_path']} not exists")
invalid_num += 1
continue
if not filter_center(pano['corners']):
# logger.warning(f"{pano['id']} camera center not in layout")
# invalid_num += 1
continue
if self.max_wall_num >= 10:
if len(pano['corners']) < self.max_wall_num:
invalid_num += 1
continue
elif self.max_wall_num != 0 and len(pano['corners']) != self.max_wall_num:
invalid_num += 1
continue
if not filter_boundary(pano['corners']):
logger.warning(f"{pano['id']} boundary cross")
invalid_num += 1
continue
if not filter_self_intersection(pano['corners']):
logger.warning(f"{pano['id']} self_intersection")
invalid_num += 1
continue
self.data.append(pano)
logger.info(
f"Build dataset mode: {self.mode} max_wall_num: {self.max_wall_num} valid: {len(self.data)} invalid: {invalid_num}")
def __getitem__(self, idx):
pano = self.data[idx]
rgb_path = pano['img_path']
label = pano
image = read_image(rgb_path, self.shape)
if self.vp_align:
# Equivalent to vanishing point alignment step
rotation = calc_rotation(corners=label['corners'])
shift = math.modf(rotation / (2 * np.pi) + 1)[0]
image = np.roll(image, round(shift * self.shape[1]), axis=1)
label['corners'][:, 0] = np.modf(label['corners'][:, 0] + shift)[0]
output = self.process_data(label, image, self.patch_num)
return output
if __name__ == "__main__":
import numpy as np
from PIL import Image
from tqdm import tqdm
from visualization.boundary import draw_boundaries, draw_object
from visualization.floorplan import draw_floorplan
from utils.boundary import depth2boundaries, calc_rotation
from utils.conversion import uv2xyz
from models.other.init_env import init_env
init_env(123)
modes = ['val']
for i in range(1):
for mode in modes:
print(mode)
mp3d_dataset = ZindDataset(root_dir='../src/dataset/zind', mode=mode, aug={
'STRETCH': False,
'ROTATE': False,
'FLIP': False,
'GAMMA': False
})
# continue
# save_dir = f'../src/dataset/zind/visualization/{mode}'
# if not os.path.isdir(save_dir):
# os.makedirs(save_dir)
bar = tqdm(mp3d_dataset, ncols=100)
for data in bar:
# if data['id'] != '1079_pano_18':
# continue
bar.set_description(f"Processing {data['id']}")
boundary_list = depth2boundaries(data['ratio'], data['depth'], step=None)
pano_img = draw_boundaries(data['image'].transpose(1, 2, 0), boundary_list=boundary_list, show=True)
# Image.fromarray((pano_img * 255).astype(np.uint8)).save(
# os.path.join(save_dir, f"{data['id']}_boundary.png"))
# draw_object(pano_img, heat_maps=data['object_heat_map'], depth=data['depth'],
# size=data['object_size'], show=True)
# pass
#
floorplan = draw_floorplan(uv2xyz(boundary_list[0])[..., ::2], show=True,
marker_color=None, center_color=0.2)
# Image.fromarray((floorplan.squeeze() * 255).astype(np.uint8)).save(
# os.path.join(save_dir, f"{data['id']}_floorplan.png"))