import torch import torch.nn.functional as F from torch import nn, einsum from einops import rearrange class PreNorm(nn.Module): def __init__(self, dim, fn): super().__init__() self.norm = nn.LayerNorm(dim) self.fn = fn def forward(self, x, **kwargs): return self.fn(self.norm(x), **kwargs) class GELU(nn.Module): def forward(self, input): return F.gelu(input) class Attend(nn.Module): def __init__(self, dim=None): super().__init__() self.dim = dim def forward(self, input): return F.softmax(input, dim=self.dim, dtype=input.dtype) class FeedForward(nn.Module): def __init__(self, dim, hidden_dim, dropout=0.): super().__init__() self.net = nn.Sequential( nn.Linear(dim, hidden_dim), GELU(), nn.Dropout(dropout), nn.Linear(hidden_dim, dim), nn.Dropout(dropout) ) def forward(self, x): return self.net(x) class Attention(nn.Module): def __init__(self, dim, heads=8, dim_head=64, dropout=0.): super().__init__() inner_dim = dim_head * heads project_out = not (heads == 1 and dim_head == dim) self.heads = heads self.scale = dim_head ** -0.5 self.attend = Attend(dim=-1) self.to_qkv = nn.Linear(dim, inner_dim * 3, bias=False) self.to_out = nn.Sequential( nn.Linear(inner_dim, dim), nn.Dropout(dropout) ) if project_out else nn.Identity() def forward(self, x): b, n, _, h = *x.shape, self.heads qkv = self.to_qkv(x).chunk(3, dim=-1) q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h=h), qkv) dots = einsum('b h i d, b h j d -> b h i j', q, k) * self.scale attn = self.attend(dots) out = einsum('b h i j, b h j d -> b h i d', attn, v) out = rearrange(out, 'b h n d -> b n (h d)') return self.to_out(out) class Conv(nn.Module): def __init__(self, dim, dropout=0.): super().__init__() self.dim = dim self.net = nn.Sequential( nn.Conv1d(dim, dim, kernel_size=3, stride=1, padding=0), nn.Dropout(dropout) ) def forward(self, x): x = x.transpose(1, 2) x = torch.cat([x[..., -1:], x, x[..., :1]], dim=-1) x = self.net(x) return x.transpose(1, 2) class ConvTransformer(nn.Module): def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout=0.): super().__init__() self.layers = nn.ModuleList([]) for _ in range(depth): self.layers.append(nn.ModuleList([ PreNorm(dim, Attention(dim, heads=heads, dim_head=dim_head, dropout=dropout)), PreNorm(dim, FeedForward(dim, mlp_dim, dropout=dropout)), PreNorm(dim, Conv(dim, dropout=dropout)) ])) def forward(self, x): for attn, ff, cov in self.layers: x = attn(x) + x x = ff(x) + x x = cov(x) + x return x if __name__ == '__main__': token_dim = 1024 toke_len = 256 transformer = ConvTransformer(dim=token_dim, depth=6, heads=16, dim_head=64, mlp_dim=2048, dropout=0.1) total = sum(p.numel() for p in transformer.parameters()) trainable = sum(p.numel() for p in transformer.parameters() if p.requires_grad) print('parameter total:{:,}, trainable:{:,}'.format(total, trainable)) input = torch.randn(1, toke_len, token_dim) output = transformer(input) print(output.shape)