Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,6 @@
|
|
1 |
import gradio as gr
|
2 |
import spaces
|
3 |
import torch
|
4 |
-
|
5 |
torch.jit.script = lambda f: f # Avoid script error in lambda
|
6 |
|
7 |
from t2v_metrics import VQAScore, list_all_vqascore_models
|
@@ -9,9 +8,8 @@ from t2v_metrics import VQAScore, list_all_vqascore_models
|
|
9 |
# Global model variable, but do not initialize or move to CUDA here
|
10 |
model_pipe = VQAScore(model="clip-flant5-xl", device="cuda") # our recommended scoring model
|
11 |
|
12 |
-
@spaces.GPU
|
13 |
def generate(model_name, image, text):
|
14 |
-
|
15 |
print(list_all_vqascore_models()) # Debug: List available models
|
16 |
print("Image:", image) # Debug: Print image path
|
17 |
print("Text:", text) # Debug: Print text input
|
@@ -25,10 +23,12 @@ def generate(model_name, image, text):
|
|
25 |
|
26 |
return result # Return the result
|
27 |
|
28 |
-
|
29 |
fn=generate, # function to call
|
30 |
inputs=[gr.Dropdown(["clip-flant5-xl", "clip-flant5-xxl"], label="Model Name"), gr.Image(type="filepath"), gr.Textbox(label="Prompt")], # define the types of inputs
|
31 |
outputs="number", # define the type of output
|
32 |
title="VQAScore", # title of the app
|
33 |
description="This model evaluates the similarity between an image and a text prompt."
|
34 |
-
)
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import spaces
|
3 |
import torch
|
|
|
4 |
torch.jit.script = lambda f: f # Avoid script error in lambda
|
5 |
|
6 |
from t2v_metrics import VQAScore, list_all_vqascore_models
|
|
|
8 |
# Global model variable, but do not initialize or move to CUDA here
|
9 |
model_pipe = VQAScore(model="clip-flant5-xl", device="cuda") # our recommended scoring model
|
10 |
|
11 |
+
@spaces.GPU(duration = 300)
|
12 |
def generate(model_name, image, text):
|
|
|
13 |
print(list_all_vqascore_models()) # Debug: List available models
|
14 |
print("Image:", image) # Debug: Print image path
|
15 |
print("Text:", text) # Debug: Print text input
|
|
|
23 |
|
24 |
return result # Return the result
|
25 |
|
26 |
+
demo = gr.Interface(
|
27 |
fn=generate, # function to call
|
28 |
inputs=[gr.Dropdown(["clip-flant5-xl", "clip-flant5-xxl"], label="Model Name"), gr.Image(type="filepath"), gr.Textbox(label="Prompt")], # define the types of inputs
|
29 |
outputs="number", # define the type of output
|
30 |
title="VQAScore", # title of the app
|
31 |
description="This model evaluates the similarity between an image and a text prompt."
|
32 |
+
)
|
33 |
+
|
34 |
+
demo.launch()
|