ECX_V001 / app.py
Ziv Pollak
fixes
5aadbcd
raw
history blame
5.74 kB
import gradio as gr
import pandas as pd
import cv2
import mediapipe as mp
import os
from statistics import mean
import numpy as np
from mediapipe.tasks import python
from mediapipe.tasks.python import vision
from mediapipe.framework.formats import landmark_pb2
from mediapipe import solutions
from PIL import Image
import torch, torchvision
import torchvision.transforms as T
from huggingface_hub import hf_hub_download
import matplotlib
matplotlib.use("Agg")
import matplotlib.pyplot as plt
cropped_image = []
analyzed_image = []
finetuned_classes = [
'iris',
]
# take a phone
# run face landmark on it to crop image
# run our model on it
# Display results
# Create a FaceLandmarker object.
base_options = python.BaseOptions(model_asset_path='face_landmarker_v2_with_blendshapes.task')
options = vision.FaceLandmarkerOptions(base_options=base_options,
output_face_blendshapes=True,
output_facial_transformation_matrixes=True,
num_faces=1)
detector = vision.FaceLandmarker.create_from_options(options)
# Loading the model
model = torch.hub.load('facebookresearch/detr', 'detr_resnet50', pretrained=False, num_classes=1)
hf_hub_download(repo_id="zivpollak/ECXV001", filename="checkpoint.pth", local_dir='.')
checkpoint = torch.load('checkpoint.pth', map_location='cpu')
model.load_state_dict(checkpoint['model'], strict=False)
model.eval()
def video_identity(video):
return video
# standard PyTorch mean-std input image normalization
transform = T.Compose([
T.Resize(800),
T.ToTensor(),
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
def handle_image(input_image):
global cropped_image, analyzed_image
cv2.imwrite("image.jpg", input_image)
#image = mp.Image.create_from_file("image.jpg")
image = mp.Image(image_format=mp.ImageFormat.SRGB, data=np.asarray(input_image))
cropped_image = image.numpy_view().copy()
analyzed_image = image.numpy_view().copy()
detection_result = detector.detect(image)
face_landmarks_list = detection_result.face_landmarks
# Draw the face landmarks.
face_landmarks = face_landmarks_list[0]
face_landmarks_proto = landmark_pb2.NormalizedLandmarkList()
face_landmarks_proto.landmark.extend([
landmark_pb2.NormalizedLandmark(x=landmark.x, y=landmark.y, z=landmark.z) for landmark in face_landmarks
])
height, width, _ = cropped_image.shape
p1 = [int(face_landmarks_proto.landmark[70].x * width), int(face_landmarks_proto.landmark[70].y * height)]
cv2.circle(input_image, (p1[0], p1[1]), 10, (0, 0, 255), -1)
p2 = [int(face_landmarks_proto.landmark[346].x * width), int(face_landmarks_proto.landmark[346].y * height)]
cv2.circle(input_image, (p2[0], p2[1]), 10, (0, 0, 255), -1)
cropped_image = cropped_image[p1[1]:p2[1], p1[0]:p2[0]]
output_image = run_worflow(cropped_image, model)
return (output_image)
def filter_bboxes_from_outputs(img,
outputs,
threshold=0.7
):
# keep only predictions with confidence above threshold
probas = outputs['pred_logits'].softmax(-1)[0, :, :-1]
keep = probas.max(-1).values > threshold
probas_to_keep = probas[keep]
# convert boxes from [0; 1] to image scales
bboxes_scaled = rescale_bboxes(outputs['pred_boxes'][0, keep], img.size)
return probas_to_keep, bboxes_scaled
def plot_finetuned_results(img, prob=None, boxes=None):
if prob is not None and boxes is not None:
for p, (xmin, ymin, xmax, ymax) in zip(prob, boxes.tolist()):
print("adding rectangle")
cv2.rectangle(img, (int(xmin), int(ymin)), (int(xmax), int(ymax)), (0, 255, 255), 1)
return img
def rescale_bboxes(out_bbox, size):
print (size)
img_w, img_h = size
b = box_cxcywh_to_xyxy(out_bbox)
b = b * torch.tensor([img_w, img_h, img_w, img_h], dtype=torch.float32)
return b
def box_cxcywh_to_xyxy(x):
x_c, y_c, w, h = x.unbind(1)
b = [(x_c - 0.5 * w), (y_c - 0.5 * h),
(x_c + 0.5 * w), (y_c + 0.5 * h)]
return torch.stack(b, dim=1)
def run_worflow(my_image, my_model):
# Write image to disk and read it as PIL !!!!
cv2.imwrite("img1.jpg", my_image)
my_image = Image.open("img1.jpg")
# mean-std normalize the input image (batch-size: 1)
img = transform(my_image).unsqueeze(0)
# propagate through the model
outputs = my_model(img)
output_image = cv2.imread("img1.jpg")
for threshold in [0.4, 0.4]:
probas_to_keep, bboxes_scaled = filter_bboxes_from_outputs(my_image,
outputs,
threshold=threshold)
print(bboxes_scaled)
output_image = plot_finetuned_results(output_image,
probas_to_keep,
bboxes_scaled)
return output_image
with gr.Blocks() as demo:
gr.Markdown(
"""
# Iris detection
""")
#video1 = gr.Video(height=200, width=200)#source="webcam")
image1 = gr.Image()
b = gr.Button("Analyze")
gr.Markdown(
"""
# Cropped image
""")
#cropped_image = gr.Gallery(
# label="cropped", show_label=False, elem_id="cropped"
#)
cropped_image = gr.Image()
out = [cropped_image]
b.click(fn=handle_image, inputs=image1, outputs=out)
demo.launch()