zivpollak commited on
Commit
99d9db7
2 Parent(s): 5aadbcd 05c2315

Merge branch 'main' of https://huggingface.co/spaces/zivpollak/ECX_V001

Browse files
Files changed (2) hide show
  1. clinical1.py +0 -102
  2. requierments.txt +0 -6
clinical1.py DELETED
@@ -1,102 +0,0 @@
1
- import gradio as gr
2
- import pandas as pd
3
- import cv2
4
- import mediapipe as mp
5
- import os
6
- from statistics import mean
7
- import numpy as np
8
- from mediapipe.tasks import python
9
- from mediapipe.tasks.python import vision
10
- from mediapipe.framework.formats import landmark_pb2
11
- from mediapipe import solutions
12
-
13
-
14
- import matplotlib
15
- matplotlib.use("Agg")
16
- import matplotlib.pyplot as plt
17
-
18
- cropped_image = []
19
- analyzed_image = []
20
- # take a phone
21
- # run face landmark on it to crop image
22
- # run our model on it
23
- # Display results
24
-
25
- # Create a FaceLandmarker object.
26
- base_options = python.BaseOptions(model_asset_path='face_landmarker_v2_with_blendshapes.task')
27
- options = vision.FaceLandmarkerOptions(base_options=base_options,
28
- output_face_blendshapes=True,
29
- output_facial_transformation_matrixes=True,
30
- num_faces=1)
31
- detector = vision.FaceLandmarker.create_from_options(options)
32
-
33
-
34
- def video_identity(video):
35
- return video
36
-
37
-
38
- #demo = gr.Interface(video_identity,
39
- # gr.Video(shape = (1000,1000), source="webcam"),
40
- # "playable_video")
41
-
42
-
43
- def handle_image(input_image):
44
- global cropped_image, analyzed_image
45
- cv2.imwrite("image.jpg", input_image)
46
- image = mp.Image.create_from_file("image.jpg")
47
-
48
- detection_result = detector.detect(image)
49
- cropped_image = image.numpy_view().copy()
50
- analyzed_image = image.numpy_view().copy()
51
-
52
- face_landmarks_list = detection_result.face_landmarks
53
-
54
- # Draw the face landmarks.
55
- face_landmarks = face_landmarks_list[0]
56
- face_landmarks_proto = landmark_pb2.NormalizedLandmarkList()
57
- face_landmarks_proto.landmark.extend([
58
- landmark_pb2.NormalizedLandmark(x=landmark.x, y=landmark.y, z=landmark.z) for landmark in face_landmarks
59
- ])
60
-
61
- height, width, _ = cropped_image.shape
62
- p1 = [int(face_landmarks_proto.landmark[70].x * width), int(face_landmarks_proto.landmark[70].y * height)]
63
- cv2.circle(input_image, (p1[0], p1[1]), 10, (0, 0, 255), -1)
64
- p2 = [int(face_landmarks_proto.landmark[346].x * width), int(face_landmarks_proto.landmark[346].y * height)]
65
- cv2.circle(input_image, (p2[0], p2[1]), 10, (0, 0, 255), -1)
66
- print(p1[0], p1[1], p2[0], p2[1], height, width)
67
- cropped_image = cropped_image[p1[1]:p2[1], p1[0]:p2[0]]
68
- # [row starting from the top]
69
- #return ([input_image, cropped_image])
70
- return (cropped_image)
71
-
72
-
73
-
74
- with gr.Blocks() as demo:
75
- gr.Markdown(
76
- """
77
- # Iris detection
78
- """)
79
- #video1 = gr.Video(height=200, width=200)#source="webcam")
80
-
81
- image1 = gr.Image()
82
- b = gr.Button("Analyze")
83
-
84
-
85
- gr.Markdown(
86
- """
87
- # Cropped image
88
- """)
89
- #cropped_image = gr.Gallery(
90
- # label="cropped", show_label=False, elem_id="cropped"
91
- #)
92
- cropped_image = gr.Image()
93
-
94
- out = [cropped_image]
95
- b.click(fn=handle_image, inputs=image1, outputs=out)
96
-
97
- demo.launch()
98
-
99
-
100
-
101
-
102
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
requierments.txt DELETED
@@ -1,6 +0,0 @@
1
-
2
- numpy
3
- pandas
4
- Pillow
5
- opencv-python
6
- mediapipe