Spaces:
Sleeping
Sleeping
File size: 11,073 Bytes
1342daf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 |
import gradio as gr
import mediapipe as mp
import cv2
import pandas as pd
from statistics import mean
# Run simple face mesh
mp_face_mesh = mp.solutions.face_mesh
mp_drawing = mp.solutions.drawing_utils
drawing_spec = mp_drawing.DrawingSpec(thickness=2, circle_radius=3)
global pupilLocation, movementLeft, movementRight
pupilLocation = pd.DataFrame()
movementLeft = pd.DataFrame(index=['Up', 'Center', 'Down'], columns=['Left', 'Center', 'Right'])
movementRight = pd.DataFrame(index=['Up', 'Center', 'Down'], columns=['Left', 'Center', 'Right'])
# TO DO:
# 1. Calibration screen
def findIris(input_img1, input_img2, input_img3, input_img4, input_img5):
global pupilLocation
pupilLocation = pd.DataFrame() # Make sure it is empty
images = [input_img1, input_img2, input_img3, input_img4, input_img5]
output_images = []
pupil_sizes = []
with mp_face_mesh.FaceMesh(max_num_faces=1, refine_landmarks=True,
static_image_mode=True,
min_detection_confidence=0.45) as face_mesh:
for image in images:
if image is None:
continue
results = face_mesh.process(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
if not results.multi_face_landmarks:
continue
annotated_image = image.copy()
for face_landmarks in results.multi_face_landmarks:
height, width, _ = annotated_image.shape
nose = [int(face_landmarks.landmark[168].x * width), int(face_landmarks.landmark[168].y * height)]
cv2.circle(annotated_image, (nose[0], nose[1]), 3, (0, 0, 255), -1)
leftIrisPoints = [474, 475, 476, 477]
rightIrisPoints = [469, 470, 471, 472]
# right, top, left, bottom
left_iris = []
for p in leftIrisPoints:
point = [int(face_landmarks.landmark[p].x * width), int(face_landmarks.landmark[p].y * height)]
left_iris.append(point)
cv2.circle(annotated_image, point, 1, (255, 0, 255), 2)
right_iris = []
for p in rightIrisPoints:
point = [int(face_landmarks.landmark[p].x * width), int(face_landmarks.landmark[p].y * height)]
right_iris.append(point)
cv2.circle(annotated_image, point, 1, (255, 0, 255), 2)
leftIris_leftside = (int(left_iris[2][0]), int(left_iris[2][1]))
leftIris_rightside = (int(left_iris[0][0]), int(left_iris[0][1]))
leftIris_top = (int(left_iris[1][0]), int(left_iris[1][1]))
leftIris_bottom = (int(left_iris[3][0]), int(left_iris[3][1]))
rightIris_leftside = (int(right_iris[2][0]), int(right_iris[2][1]))
rightIris_rightside = (int(right_iris[0][0]), int(right_iris[0][1]))
rightIris_top = (int(right_iris[1][0]), int(right_iris[1][1]))
rightIris_bottom = (int(right_iris[3][0]), int(right_iris[3][1]))
'''
cv2.circle(annotated_image,
(int((leftIris_leftside[0] + leftIris_rightside[0]) / 2),
int((leftIris_top[1] + leftIris_bottom[1]) / 2)),
# int(abs(leftIris_leftside[0] - leftIris_rightside[0])/2
1,
(0, 255, 255), 2)
cv2.circle(annotated_image,
(int((rightIris_leftside[0] + rightIris_rightside[0]) / 2),
int((rightIris_top[1] + rightIris_bottom[1]) / 2)),
# int(abs(rightIris_leftside[0] - rightIris_rightside[0]) / 2
1,
(0, 255, 255), 2)
'''
left = leftIris_leftside[0] - 150
right = rightIris_rightside[0] + 150
up = leftIris_top[1] - 50
down = leftIris_bottom[1] + 50
annotated_image = annotated_image[up:down, left:right]
name = 'TBD'
newRow = pd.Series([name,
leftIris_leftside[0] - nose[0],
leftIris_top[1] - nose[1],
leftIris_rightside[0] - nose[0],
leftIris_bottom[1] - nose[1],
rightIris_leftside[0] - nose[0],
rightIris_top[1] - nose[1],
rightIris_rightside[0] - nose[0],
rightIris_bottom[1] - nose[1]
])
newRow = newRow.to_frame().T
pupilLocation = pd.concat([pupilLocation, newRow], axis=0, ignore_index=True)
#print("Inside pupil Location = ", pupilLocation)
#filename = directoy_name + 'Analysis/' + name[0:-4] + '-analysis.jpg'
#cv2.imwrite(filename, annotated_image)
x1 = (leftIris_leftside[0] - nose[0] + leftIris_rightside[0] - nose[0]) / 2
y1 = (leftIris_top[1] - nose[1] + leftIris_bottom[1] - nose[1]) / 2
x2 = (rightIris_leftside[0] - nose[0] + rightIris_rightside[0] - nose[0]) / 2
y2 = (rightIris_top[1] - nose[1] + rightIris_bottom[1] - nose[1]) / 2
print("Slope=", (y2 - y1) / (x2 - x1))
text = "Slope=" + str(round((y2 - y1) / (x2 - x1), 2))
cv2.putText(annotated_image, text,
(5, 110), cv2.FONT_HERSHEY_SIMPLEX,
1, (255, 255, 0), 1, cv2.LINE_AA)
print("left iris size in pixels = ", abs(leftIris_leftside[0] - leftIris_rightside[0]))
print("Right iris size in pixels = ", abs(rightIris_leftside[0] - rightIris_rightside[0]))
pupil_sizes.append(abs(leftIris_leftside[0] - leftIris_rightside[0]))
pupil_sizes.append(abs(rightIris_leftside[0] - rightIris_rightside[0]))
output_images.append(annotated_image)
# calculate final results from pupilLocations
pupilDiff = pupilLocation.copy()
pupilDiff = pupilDiff.drop(pupilDiff.columns[0], axis=1) # Remove file name
for i in range(pupilDiff.shape[0] - 1): # Calculate deltas
pupilDiff.loc[i + 1] = abs(pupilDiff.loc[i + 1] - pupilDiff.loc[0])
print("pupilDiff=", pupilDiff)
pupilDiff = pupilDiff.drop(0, axis=0) # Remove first row was was used as reference row
#print("pupilDiff (in pixels)=", pupilDiff)
# Find average pupil size
pupil_sizes.remove(max(pupil_sizes))
pupil_sizes.remove(min(pupil_sizes))
pupil_average = mean(pupil_sizes) # this should be 11.7 mm
pixels = 11.7 / pupil_average
print("pixels (In MM) = ", pixels)
# Left Eye movement
movementLeft.iloc[0, 0] = ' '
movementLeft.iloc[0, 2] = ' '
movementLeft.iloc[1, 1] = 0 # reference point
movementLeft.iloc[2, 0] = ' '
movementLeft.iloc[2, 2] = ' '
# Y movement only
movementLeft.iloc[0, 1] = round(abs(pupilLocation.iloc[0, 4] - pupilLocation.iloc[1, 4]) * pixels, 0) # Up
movementLeft.iloc[2, 1] = round(abs(pupilLocation.iloc[0, 2] - pupilLocation.iloc[3, 2]) * pixels, 0) # Down
# X movement only
movementLeft.iloc[1, 0] = round(abs(pupilLocation.iloc[0, 3] - pupilLocation.iloc[1, 3]) * pixels, 1) # Left
movementLeft.iloc[1, 2] = round(abs(pupilLocation.iloc[0, 1] - pupilLocation.iloc[2, 1]) * pixels, 1) # Right
# Right Eye Movement
movementRight.iloc[0, 0] = ' '
movementRight.iloc[0, 2] = ' '
movementRight.iloc[1, 1] = 0 # reference point
movementRight.iloc[2, 0] = ' '
movementRight.iloc[2, 2] = ' '
# Y movement only
movementRight.iloc[0, 1] = round(abs(pupilLocation.iloc[0, 8] - pupilLocation.iloc[1, 8]) * pixels, 0) # Up
movementRight.iloc[2, 1] = round(abs(pupilLocation.iloc[0, 6] - pupilLocation.iloc[3, 6]) * pixels, 0) # Down
# X movement only
movementRight.iloc[1, 0] = round(abs(pupilLocation.iloc[0, 7] - pupilLocation.iloc[1, 7]) * pixels, 0) # Left
movementRight.iloc[1, 2] = round(abs(pupilLocation.iloc[0, 5] - pupilLocation.iloc[2, 5]) * pixels, 0) # Right
return output_images[0], output_images[1], output_images[2], output_images[3], output_images[4], pupilLocation, movementLeft, movementRight
with gr.Blocks() as demo:
gr.Markdown(
"""
# Range of Motion Image Analysis
Take 5 pictures below looking stright, left, right, up & down
""")
with gr.Row():
with gr.Column(scale=1):
img1 = gr.Image(shape=(1000, 1000), source='webcam', label='Front')
with gr.Column(scale=1):
out1 = gr.Image(label='Out-Front')
with gr.Row():
with gr.Column(scale=1):
img2 = gr.Image(shape=(1000, 1000), source='webcam', label='Left')
with gr.Column(scale=1):
out2 = gr.Image(label='Out-Left')
with gr.Row():
with gr.Column(scale=1):
img3 = gr.Image(shape=(1000, 1000), source='webcam', label='Right')
with gr.Column(scale=1):
out3 = gr.Image(label='Out-Right')
with gr.Row():
with gr.Column(scale=1):
img4 = gr.Image(shape=(1000, 1000), source='webcam', label='Up')
with gr.Column(scale=1):
out4 = gr.Image(label='Out-Up')
with gr.Row():
with gr.Column(scale=1):
img5 = gr.Image(shape=(1000, 1000), source='webcam', label='Down')
with gr.Column(scale=1):
out5 = gr.Image(label='Down-Right')
b = gr.Button("Go!")
gr.Markdown(
"""
Pupil Locations:
""")
pupilData = gr.Dataframe(pupilLocation)
gr.Markdown(
"""
# Left eye results (in mm):
""")
movementDataLeft = gr.Dataframe(movementLeft)
gr.Markdown(
"""
# Right eye results (in mm):
""")
movementDataRight = gr.Dataframe(movementRight)
inp = [img1, img2, img3, img4, img5]
out = [out1, out2, out3, out4, out5, pupilData, movementDataLeft, movementDataRight]
b.click(fn=findIris, inputs=inp, outputs=out)
demo.launch(auth=("Andrew", "Andrew"), share=True) |