File size: 16,369 Bytes
1342daf
 
 
 
01d96f4
 
1342daf
 
 
 
 
 
 
 
 
 
 
 
 
 
01d96f4
 
 
 
 
15b346a
 
49bd2e1
01d96f4
 
 
 
1342daf
 
 
 
 
 
 
 
 
 
15b346a
 
 
1342daf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
01d96f4
1342daf
 
 
 
 
01d96f4
1342daf
 
 
 
 
 
 
 
 
 
01d96f4
 
 
 
 
 
 
 
 
49bd2e1
15b346a
 
 
 
49bd2e1
506fb74
15b346a
01d96f4
 
 
15b346a
01d96f4
 
15b346a
 
 
 
 
506fb74
15b346a
01d96f4
 
 
15b346a
01d96f4
 
 
15b346a
01d96f4
1342daf
 
 
 
 
 
 
 
 
 
 
 
 
 
49bd2e1
1342daf
01d96f4
1342daf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
01d96f4
49bd2e1
01d96f4
 
15b346a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
01d96f4
 
15b346a
 
1342daf
 
 
 
 
 
01d96f4
 
 
1342daf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2143688
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
import gradio as gr
import mediapipe as mp
import cv2
import pandas as pd
from statistics import mean, stdev
import numpy as np

# Run simple face mesh
mp_face_mesh = mp.solutions.face_mesh
mp_drawing = mp.solutions.drawing_utils
drawing_spec = mp_drawing.DrawingSpec(thickness=2, circle_radius=3)

global pupilLocation, movementLeft, movementRight
pupilLocation = pd.DataFrame()
movementLeft = pd.DataFrame(index=['Up', 'Center', 'Down'], columns=['Left', 'Center', 'Right'])
movementRight = pd.DataFrame(index=['Up', 'Center', 'Down'], columns=['Left', 'Center', 'Right'])

# TO DO:
# 1. Calibration screen

def isEyeOpen(image):
    image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    hist = cv2.calcHist([image], [0], None, [256], [0, 256])
    colors = np.where(hist > 10)

    return np.mean(colors)

    if np.mean(colors) < 15:
        return True
    else:
        return False


def findIris(input_img1, input_img2, input_img3, input_img4, input_img5):
    global pupilLocation
    pupilLocation = pd.DataFrame() # Make sure it is empty
    images = [input_img1, input_img2, input_img3, input_img4, input_img5]
    output_images = []
    pupil_sizes = []
    with mp_face_mesh.FaceMesh(max_num_faces=1, refine_landmarks=True,
                               static_image_mode=True,
                               min_detection_confidence=0.45) as face_mesh:
        #for image in images:
        for id, image in enumerate(images):

            if image is None:
                continue

            results = face_mesh.process(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
            if not results.multi_face_landmarks:
                continue

            annotated_image = image.copy()
            for face_landmarks in results.multi_face_landmarks:
                    height, width, _ = annotated_image.shape
                    nose = [int(face_landmarks.landmark[168].x * width), int(face_landmarks.landmark[168].y * height)]
                    cv2.circle(annotated_image, (nose[0], nose[1]), 3, (0, 0, 255), -1)

                    leftIrisPoints = [474, 475, 476, 477]
                    rightIrisPoints = [469, 470, 471, 472]
                    # right, top, left, bottom

                    left_iris = []
                    for p in leftIrisPoints:
                        point = [int(face_landmarks.landmark[p].x * width), int(face_landmarks.landmark[p].y * height)]
                        left_iris.append(point)
                        #cv2.circle(annotated_image, point, 1, (255, 0, 255), 2)

                    right_iris = []
                    for p in rightIrisPoints:
                        point = [int(face_landmarks.landmark[p].x * width), int(face_landmarks.landmark[p].y * height)]
                        right_iris.append(point)
                        #cv2.circle(annotated_image, point, 1, (255, 0, 255), 2)

                    leftIris_leftside = (int(left_iris[2][0]), int(left_iris[2][1]))
                    leftIris_rightside = (int(left_iris[0][0]), int(left_iris[0][1]))
                    leftIris_top = (int(left_iris[1][0]), int(left_iris[1][1]))
                    leftIris_bottom = (int(left_iris[3][0]), int(left_iris[3][1]))
                    rightIris_leftside = (int(right_iris[2][0]), int(right_iris[2][1]))
                    rightIris_rightside = (int(right_iris[0][0]), int(right_iris[0][1]))
                    rightIris_top = (int(right_iris[1][0]), int(right_iris[1][1]))
                    rightIris_bottom = (int(right_iris[3][0]), int(right_iris[3][1]))

                    sizeIncrease = 0
                    leftEye = annotated_image[leftIris_top[1] - sizeIncrease : leftIris_bottom[1] + sizeIncrease,
                                             leftIris_leftside[0] - sizeIncrease : leftIris_rightside[0] + sizeIncrease]
                    leftEyeOpen = isEyeOpen (leftEye)

                    rightEye = annotated_image[rightIris_top[1] - sizeIncrease: rightIris_bottom[1] + sizeIncrease,
                              rightIris_leftside[0] - sizeIncrease: rightIris_rightside[0] + sizeIncrease]
                    rightEyeOpen = isEyeOpen(rightEye)

                    '''
                    cv2.putText(annotated_image, "Left " + str(int(leftEyeOpen)),
                                (rightIris_leftside[0] - 20, leftIris_top[1] - 10), cv2.FONT_HERSHEY_SIMPLEX,
                                1, (255, 255, 0), 1, cv2.LINE_AA)
                    '''

                    if (leftEyeOpen < 15):
                        cv2.putText(annotated_image, "Left Open " + str(leftEyeOpen),
                                    (rightIris_leftside[0] - 20, leftIris_top[1] - 10), cv2.FONT_HERSHEY_SIMPLEX,
                                    1, (255, 255, 0), 1, cv2.LINE_AA)
                    else:
                        cv2.putText(annotated_image, "Left Closed " + str(leftEyeOpen),
                                    (rightIris_leftside[0] - 20, leftIris_top[1] - 10), cv2.FONT_HERSHEY_SIMPLEX,
                                    1, (255, 255, 0), 1, cv2.LINE_AA)
                    '''
                    cv2.putText(annotated_image, "Right " + str(int(rightEyeOpen)),
                                (rightIris_leftside[0] - 20, rightIris_top[1] + 50), cv2.FONT_HERSHEY_SIMPLEX,
                                1, (255, 255, 0), 1, cv2.LINE_AA)
                    '''
                    if (rightEyeOpen < 15):
                        cv2.putText(annotated_image, "Right Open " + str(rightEyeOpen),
                                    (rightIris_leftside[0] - 20, rightIris_top[1] + 50), cv2.FONT_HERSHEY_SIMPLEX,
                                    1, (255, 255, 0), 1, cv2.LINE_AA)
                    else:
                        cv2.putText(annotated_image, "Right Closed " + str(rightEyeOpen),
                                    (rightIris_leftside[0] - 20, rightIris_top[1] + 50), cv2.FONT_HERSHEY_SIMPLEX,
                                    1, (255, 255, 0), 1, cv2.LINE_AA)
                    #leftEye = cv2.cvtColor(leftEye, cv2.COLOR_BGR2GRAY)
                    '''

                    '''
                    cv2.circle(annotated_image,
                               (int((leftIris_leftside[0] + leftIris_rightside[0]) / 2),
                                int((leftIris_top[1] + leftIris_bottom[1]) / 2)),
                               # int(abs(leftIris_leftside[0] - leftIris_rightside[0])/2
                               1,
                               (0, 255, 255), 2)

                    cv2.circle(annotated_image,
                               (int((rightIris_leftside[0] + rightIris_rightside[0]) / 2),
                                int((rightIris_top[1] + rightIris_bottom[1]) / 2)),
                               # int(abs(rightIris_leftside[0] - rightIris_rightside[0]) / 2
                               1,
                               (0, 255, 255), 2)




                    name = 'TBD'
                    newRow = pd.Series([name,
                                        leftIris_leftside[0] - nose[0],
                                        leftIris_top[1] - nose[1],
                                        leftIris_rightside[0] - nose[0],
                                        leftIris_bottom[1] - nose[1],
                                        rightIris_leftside[0] - nose[0],
                                        rightIris_top[1] - nose[1],
                                        rightIris_rightside[0] - nose[0],
                                        rightIris_bottom[1] - nose[1]
                                        ])
                    newRow = newRow.to_frame().T
                    pupilLocation = pd.concat([pupilLocation, newRow], axis=0, ignore_index=True)
                    #print("Inside pupil Location = ", pupilLocation)
                    #filename = directoy_name + 'Analysis/' + name[0:-4] + '-analysis.jpg'
                    #cv2.imwrite(filename, annotated_image)

                    left = leftIris_leftside[0] - 150
                    right = rightIris_rightside[0] + 150 + 150
                    up = leftIris_top[1] - 50
                    down = leftIris_bottom[1] + 50

                    boundryIncrease = 10
                    print("leftside = ",  leftIris_leftside[0])
                    print("rightside =",  leftIris_rightside[0])
                    #print("left = ", left)
                    #print("right = ", right)

                    '''
                    if (id == 1): # Looking Left so we want the right limbus
                        print("Id == 1")
                        annotated_image = annotated_image[
                                          leftIris_top[1]  : leftIris_bottom[1],
                                          leftIris_rightside[0] - boundryIncrease : leftIris_rightside[0] + boundryIncrease
                                          ]
                        annotated_image = cv2.cvtColor(annotated_image, cv2.COLOR_BGR2GRAY)
                        #annotated_image = cv2.GaussianBlur(annotated_image, (3, 3), sigmaX=0, sigmaY=0)
                        annotated_image = cv2.Canny(annotated_image, 50, 125)
                        #annotated_image = cv2.Sobel(src=annotated_image, ddepth=cv2.CV_64F, dx=0, dy=1,
                        #                   ksize=5)  # Sobel Edge Detection on the Y axis

                        contours = cv2.findContours(image, cv2.RETR_LIST, cv2.RETR_EXTERNAL)
                        contours = sorted(contours, key=cv2.contourArea, reverse=True)
                        for i in range(len(contours)):
                            contour = contours[i]
                            random.seed(i)
                            color = (255 * random.random(), 255 * random.random(), 255 * random.random())
                            cv2.drawContours(img, [contour], -1, color, 3)


                    elif (id == 2): # Looking Right so we want the left limbus
                        annotated_image = annotated_image[
                                          leftIris_top[1]: leftIris_bottom[1],
                                          leftIris_leftside[0] - boundryIncrease: leftIris_leftside[0] + boundryIncrease
                                          ]
                        annotated_image = cv2.cvtColor(annotated_image, cv2.COLOR_BGR2GRAY)
                        # annotated_image = cv2.GaussianBlur(annotated_image, (3, 3), sigmaX=0, sigmaY=0)
                        annotated_image = cv2.Canny(annotated_image, 50, 125)
                    else:
                    '''
                    annotated_image = annotated_image[up:down, left:right]



                    x1 = (leftIris_leftside[0] - nose[0] + leftIris_rightside[0] - nose[0]) / 2
                    y1 = (leftIris_top[1] - nose[1] + leftIris_bottom[1] - nose[1]) / 2
                    x2 = (rightIris_leftside[0] - nose[0] + rightIris_rightside[0] - nose[0]) / 2
                    y2 = (rightIris_top[1] - nose[1] + rightIris_bottom[1] - nose[1]) / 2
                    print("Slope=", (y2 - y1) / (x2 - x1))
                    text = "Slope=" + str(round((y2 - y1) / (x2 - x1), 2))
                    #cv2.putText(annotated_image, text,
                    #            (5, 110), cv2.FONT_HERSHEY_SIMPLEX,
                    #            1, (255, 255, 0), 1, cv2.LINE_AA)

                    print("left iris size in pixels = ", abs(leftIris_leftside[0] - leftIris_rightside[0]))
                    print("Right iris size in pixels = ", abs(rightIris_leftside[0] - rightIris_rightside[0]))
                    pupil_sizes.append(abs(leftIris_leftside[0] - leftIris_rightside[0]))
                    pupil_sizes.append(abs(rightIris_leftside[0] - rightIris_rightside[0]))

                    output_images.append(annotated_image)

    # calculate final results from pupilLocations
    pupilDiff = pupilLocation.copy()
    pupilDiff = pupilDiff.drop(pupilDiff.columns[0], axis=1)  # Remove file name
    for i in range(pupilDiff.shape[0] - 1): # Calculate deltas
        pupilDiff.loc[i + 1] = abs(pupilDiff.loc[i + 1] - pupilDiff.loc[0])
    print("pupilDiff=", pupilDiff)
    pupilDiff = pupilDiff.drop(0, axis=0)   # Remove first row was was used as reference row
    #print("pupilDiff (in pixels)=", pupilDiff)

    # Find average pupil size
    pupil_sizes.remove(max(pupil_sizes))
    pupil_sizes.remove(min(pupil_sizes))
    pupil_average = mean(pupil_sizes) # this should be 11.7 mm
    pixels =  11.7 / pupil_average
    print("pixels (In MM) = ", pixels)

    # Left Eye movement
    movementLeft.iloc[0, 0] = ' '
    movementLeft.iloc[0, 2] = ' '
    movementLeft.iloc[1, 1] = 0  # reference point
    movementLeft.iloc[2, 0] = ' '
    movementLeft.iloc[2, 2] = ' '

    # Y movement only
    movementLeft.iloc[0, 1] = round(abs(pupilLocation.iloc[0, 4] - pupilLocation.iloc[1, 4]) * pixels, 0) # Up
    movementLeft.iloc[2, 1] = round(abs(pupilLocation.iloc[0, 2] - pupilLocation.iloc[3, 2]) * pixels, 0) # Down

    # X movement only
    movementLeft.iloc[1, 0] = round(abs(pupilLocation.iloc[0, 3] - pupilLocation.iloc[1, 3]) * pixels, 1) # Left
    movementLeft.iloc[1, 2] = round(abs(pupilLocation.iloc[0, 1] - pupilLocation.iloc[2, 1]) * pixels, 1) # Right


    # Right Eye Movement
    movementRight.iloc[0, 0] = ' '
    movementRight.iloc[0, 2] = ' '
    movementRight.iloc[1, 1] = 0  # reference point
    movementRight.iloc[2, 0] = ' '
    movementRight.iloc[2, 2] = ' '

    # Y movement only
    movementRight.iloc[0, 1] = round(abs(pupilLocation.iloc[0, 8] - pupilLocation.iloc[1, 8]) * pixels, 0) # Up
    movementRight.iloc[2, 1] = round(abs(pupilLocation.iloc[0, 6] - pupilLocation.iloc[3, 6]) * pixels, 0) # Down

    # X movement only
    movementRight.iloc[1, 0] = round(abs(pupilLocation.iloc[0, 7] - pupilLocation.iloc[1, 7]) * pixels, 0) # Left
    movementRight.iloc[1, 2] = round(abs(pupilLocation.iloc[0, 5] - pupilLocation.iloc[2, 5]) * pixels, 0) # Right

    return output_images[0], output_images[1], output_images[2], output_images[3], output_images[4], pupilLocation, movementLeft, movementRight


with gr.Blocks() as demo:
            gr.Markdown(
            """
            # Range of Motion Image Analysis
            Take 5 pictures below looking stright, left, right, up & down
            """)
            with gr.Row():
                with gr.Column(scale=1):
                    img1 = gr.Image(shape=(1000, 1000), source='webcam', label='Front')
                with gr.Column(scale=1):
                    out1 = gr.Image(label='Out-Front')
            with gr.Row():
                with gr.Column(scale=1):
                    img2 = gr.Image(shape=(1000, 1000), source='webcam', label='Left')
                with gr.Column(scale=1):
                    out2 = gr.Image(label='Out-Left')
            with gr.Row():
                with gr.Column(scale=1):
                    img3 = gr.Image(shape=(1000, 1000), source='webcam', label='Right')
                with gr.Column(scale=1):
                    out3 = gr.Image(label='Out-Right')
            with gr.Row():
                with gr.Column(scale=1):
                    img4 = gr.Image(shape=(1000, 1000), source='webcam', label='Up')
                with gr.Column(scale=1):
                    out4 = gr.Image(label='Out-Up')
            with gr.Row():
                with gr.Column(scale=1):
                    img5 = gr.Image(shape=(1000, 1000), source='webcam', label='Down')
                with gr.Column(scale=1):
                    out5 = gr.Image(label='Down-Right')

            b = gr.Button("Go!")

            gr.Markdown(
                """
                Pupil Locations:
                """)
            pupilData = gr.Dataframe(pupilLocation)

            gr.Markdown(
                """
                # Left eye results (in mm):
                """)
            movementDataLeft = gr.Dataframe(movementLeft)

            gr.Markdown(
                """
                # Right eye results (in mm):
                """)
            movementDataRight = gr.Dataframe(movementRight)

            inp = [img1, img2, img3, img4, img5]
            out = [out1, out2, out3, out4, out5, pupilData, movementDataLeft, movementDataRight]
            b.click(fn=findIris, inputs=inp, outputs=out)


demo.launch(auth=("Andrew", "Andrew")) #, share=True