File size: 17,101 Bytes
cdeeede
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9815ff9
 
cdeeede
 
 
 
 
 
 
 
9815ff9
cdeeede
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
import gradio as gr
import pandas as pd
import cv2
import mediapipe as mp
import os
from statistics import mean
import numpy as np
from mediapipe.tasks import python
from mediapipe.tasks.python import vision
from mediapipe.framework.formats import landmark_pb2
from mediapipe import solutions


import matplotlib
matplotlib.use("Agg")
import matplotlib.pyplot as plt

# Record video
# Save video?
# Break video into images
# Run facemesh on all images and save locations
# Run exterme locations
# Run analysis on those compare to the first frame

# Create a FaceLandmarker object.
base_options = python.BaseOptions(model_asset_path='face_landmarker_v2_with_blendshapes.task')
options = vision.FaceLandmarkerOptions(base_options=base_options,
                                       output_face_blendshapes=True,
                                       output_facial_transformation_matrixes=True,
                                       num_faces=1)
detector = vision.FaceLandmarker.create_from_options(options)


global pupilLocation
pupilLocation = pd.DataFrame()
pupil_sizes =  []
ExteremeDistanceLeftEye = pd.DataFrame()
ExteremeDistanceRightEye = pd.DataFrame()

def video_identity(video):
    return video

# To do
# 1. Filter out closed eye frames
# 2. Smooth persuit from video POC

def isEyeOpen(image):
    image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    hist = cv2.calcHist([image], [0], None, [256], [0, 256])
    colors = np.where(hist > 10)

    #print ("colors=", np.mean(colors) )
    if np.mean(colors) > 15:
        return True
    else:
        return False



#demo = gr.Interface(video_identity,
#                    gr.Video(shape = (1000,1000), source="webcam"),
#                    "playable_video")

def findIrisInFrame(image, counter):
    global pupilLocation, pupil_sizes
    #pupilLocation = pd.DataFrame()  # Make sure it is empty

    image = mp.Image.create_from_file("image.jpg")

    # STEP 4: Detect face landmarks from the input image.
    detection_result = detector.detect(image)

    # STEP 5: Process the detection result. In this case, visualize it.
    #annotated_image = draw_landmarks_on_image(image.numpy_view(), detection_result)

    annotated_image = image.numpy_view().copy()

    face_landmarks_list = detection_result.face_landmarks

    '''
    # Loop through the detected faces to visualize.
    for idx in range(len(face_landmarks_list)):
        face_landmarks = face_landmarks_list[idx]

        # Draw the face landmarks.
        face_landmarks_proto = landmark_pb2.NormalizedLandmarkList()
        face_landmarks_proto.landmark.extend([
            landmark_pb2.NormalizedLandmark(x=landmark.x, y=landmark.y, z=landmark.z) for landmark in face_landmarks
        ])
        solutions.drawing_utils.draw_landmarks(
            image=annotated_image,
            landmark_list=face_landmarks_proto,
            connections=mp.solutions.face_mesh.FACEMESH_IRISES,
            landmark_drawing_spec=None,
            connection_drawing_spec=mp.solutions.drawing_styles
            .get_default_face_mesh_iris_connections_style())
    '''
    #FACEMESH_LEFT_IRIS = (474, 475, 476, 477)
    #FACEMESH_RIGHT_IRIS = (469, 470, 471, 472)
    #(lm_left_iris.x, lm_left_iris.y, lm_left_iris.z) = face_landmarks.landmark[468]
    #(lm_right_iris.x, lm_right_iris.y, lm_right_iris.z) = face_landmarks.landmark[473]

    # Draw the face landmarks.
    face_landmarks = face_landmarks_list[0]
    face_landmarks_proto = landmark_pb2.NormalizedLandmarkList()
    face_landmarks_proto.landmark.extend([
        landmark_pb2.NormalizedLandmark(x=landmark.x, y=landmark.y, z=landmark.z) for landmark in face_landmarks
    ])

    height, width, _ = annotated_image.shape
    nose = [int(face_landmarks_proto.landmark[168].x * width), int(face_landmarks_proto.landmark[168].y * height)]
    cv2.circle(annotated_image, (nose[0], nose[1]), 3, (0, 0, 255), -1)

    leftIrisPoints = [474, 475, 476, 477]
    rightIrisPoints = [469, 470, 471, 472]
    # right, top, left, bottom

    left_iris = []
    for p in leftIrisPoints:
                    point = [int(face_landmarks_proto.landmark[p].x * width), int(face_landmarks_proto.landmark[p].y * height)]
                    left_iris.append(point)
                    cv2.circle(annotated_image, point, 1, (255, 0, 255), 1)

    right_iris = []
    for p in rightIrisPoints:
                    point = [int(face_landmarks_proto.landmark[p].x * width), int(face_landmarks_proto.landmark[p].y * height)]
                    right_iris.append(point)
                    cv2.circle(annotated_image, point, 1, (255, 0, 255), 1)

    leftIris_leftside = (int(left_iris[2][0]), int(left_iris[2][1]))
    leftIris_rightside = (int(left_iris[0][0]), int(left_iris[0][1]))
    leftIris_top = (int(left_iris[1][0]), int(left_iris[1][1]))
    leftIris_bottom = (int(left_iris[3][0]), int(left_iris[3][1]))
    rightIris_leftside = (int(right_iris[2][0]), int(right_iris[2][1]))
    rightIris_rightside = (int(right_iris[0][0]), int(right_iris[0][1]))
    rightIris_top = (int(right_iris[1][0]), int(right_iris[1][1]))
    rightIris_bottom = (int(right_iris[3][0]), int(right_iris[3][1]))

    cv2.imwrite("Images/post-image-%d.jpg" % counter, annotated_image)  # save frame as JPEG file

    '''
                sizeIncrease = 0
                leftEye = annotated_image[leftIris_top[1] - sizeIncrease: leftIris_bottom[1] + sizeIncrease,
                          leftIris_leftside[0] - sizeIncrease: leftIris_rightside[0] + sizeIncrease]
                leftEyeOpen = isEyeOpen(leftEye)

                rightEye = annotated_image[rightIris_top[1] - sizeIncrease: rightIris_bottom[1] + sizeIncrease,
                           rightIris_leftside[0] - sizeIncrease: rightIris_rightside[0] + sizeIncrease]
                rightEyeOpen = isEyeOpen(rightEye)


                cv2.circle(image,
                           (int((leftIris_leftside[0] + leftIris_rightside[0]) / 2),
                            int((leftIris_top[1] + leftIris_bottom[1]) / 2)),
                           # int(abs(leftIris_leftside[0] - leftIris_rightside[0])/2),
                           1,
                           (0, 255, 255), 1)

                cv2.circle(image,
                           (int((rightIris_leftside[0] + rightIris_rightside[0]) / 2),
                            int((rightIris_top[1] + rightIris_bottom[1]) / 2)),
                           # int(abs(rightIris_leftside[0] - rightIris_rightside[0])/2),
                           1,
                           (0, 255, 255), 1)

                cv2.putText(image, str(counter),
                            (rightIris_leftside[0] - 100, leftIris_top[1] - 10), cv2.FONT_HERSHEY_SIMPLEX,
                            1, (255, 0, 0), 1, cv2.LINE_AA)


    '''
    pupil_sizes.append(abs(leftIris_leftside[0] - leftIris_rightside[0]))
    pupil_sizes.append(abs(rightIris_leftside[0] - rightIris_rightside[0]))

    name = "frame%d.jpg" % counter
    newRow = pd.Series([name,
                                    leftIris_leftside[0]   - nose[0],
                                    leftIris_top[1]        - nose[1],
                                    leftIris_rightside[0]  - nose[0],
                                    leftIris_bottom[1]     - nose[1],
                                    rightIris_leftside[0]  - nose[0],
                                    rightIris_top[1]       - nose[1],
                                    rightIris_rightside[0] - nose[0],
                                    rightIris_bottom[1]    - nose[1]
                                    ])
    newRow = newRow.to_frame().T
                #if (leftEyeOpen & rightEyeOpen):
    pupilLocation = pd.concat([pupilLocation, newRow], axis=0, ignore_index=True)
                #else:
                #    print("Ignored frame ", counter, "." , leftEyeOpen , rightEyeOpen)

    return newRow


def handleVideo(input_video):
    global ExteremeDistanceLeftEye, ExteremeDistanceRightEye, pupilLocation, pupil_sizes

    pupilLocation = pd.DataFrame() # Make sure it is empty to begin with
    pupil_sizes =  []
    vidcap = cv2.VideoCapture(input_video)
    success, image = vidcap.read()
    fps = vidcap.get(cv2.CAP_PROP_FPS)
    frame_count = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
    width = vidcap.get(cv2.CAP_PROP_FRAME_WIDTH)  # float `width`
    height = vidcap.get(cv2.CAP_PROP_FRAME_HEIGHT)  # float `height`
    print('FPS =', fps)
    print('Frame count =', frame_count)
    print('Resolution =', width, ' X ', height)

    count = 0
    if not os.path.exists('Images'):
        os.makedirs('Images')
    #os.chdir('Images')

    # Slide video into frames and find iris in each frame
    while success:
        cv2.imwrite("image.jpg", image)  # save frame as JPEG file
        print("Image#", count)
        image = mp.Image.create_from_file("image.jpg")
        findIrisInFrame(image, count)

        #cv2.imwrite("Images/frame%d.jpg" % count, image)  # save frame as JPEG file
        count += 1
        success, image = vidcap.read()


    # Go over all the pupils. If pupil is too small expand it in all directions
    # Find average pupil size
    pupil_average = 11.7
    if (len(pupil_sizes) > 100):
        for i in range(10):
           pupil_sizes.remove(max(pupil_sizes))
           pupil_sizes.remove(min(pupil_sizes))
        pupil_average = mean(pupil_sizes)  # this should be 11.7 mm
    print("pupil_average=", pupil_average)

    # pupil size need to be kept constant in all pictures
    # we find the center of the current pupil and make a circle around it in the size we need

    for index, row in pupilLocation.iterrows():
        currentLeftSize = abs(row[1] - row[3])
        diffFromLeftAverage = pupil_average - currentLeftSize
        currentRightSize = abs(row[5] - row[7])
        diffFromAverage = pupil_average - currentRightSize

        #print("(frame#", index, ") left: ", row[1], " right: ", row[3])
        #if diffFromAverage > 2:
        if (currentRightSize - currentLeftSize > 200):
            print("Fixed Left pupil")
            row[1] = int(row[1] - diffFromAverage / 2)
            row[2] = int(row[2] - diffFromAverage / 2)
            row[3] = int(row[3] + diffFromAverage / 2)
            row[4] = int(row[4] + diffFromAverage / 2)

        if (currentLeftSize - currentRightSize > 200):
            print("Fixed Right pupil")
            row[5] = int(row[5] - diffFromAverage / 2)
            row[6] = int(row[6] - diffFromAverage / 2)
            row[7] = int(row[7] + diffFromAverage / 2)
            row[8] = int(row[8] + diffFromAverage / 2)


    print("file counter=", count)
    # Convert pupilLocation to pupilDiff
    pupilDiff = pupilLocation.copy()
    pupilDiff = pupilDiff.drop(pupilDiff.columns[0], axis=1)  # Remove file name
    for i in range(pupilDiff.shape[0] - 1):  # Calculate deltas
        pupilDiff.loc[i + 1] = (pupilDiff.loc[i + 1] - pupilDiff.loc[0])
    pupilDiff = pupilDiff.drop(0, axis=0) # Remove the first row

    # Find extreme iris locations (images and measurements)

    #pupilDiff.columns = ['LL', 'LT', 'LR', 'LB', 'RR', 'RT', 'RR', 'RB']

    # Take just the relevant libmus
    #if [1] is positive, take it, otherwise take 3

    #pupilDiff[9]  = [pupilDiff[1] if x >= 0 else pupilDiff[3] for x in pupilDiff[1]]

    pupilDiff[9] = 0
    pupilDiff[10] = 0

    pupilDiff[9]  = np.where(pupilDiff[1] >= 0, pupilDiff[1], pupilDiff[3])
                             #pupilDiff[[1,3]].max(axis=1), pupilDiff[[1,3]].min(axis=1))
    pupilDiff[10] = np.where(pupilDiff[1] >= 0, pupilDiff[5], pupilDiff[7])
                             #pupilDiff[[5,7]].max(axis=1), pupilDiff[[5,7]].min(axis=1))
    pupilDiff[11] = np.where(pupilDiff[2] >= 0, pupilDiff[2], pupilDiff[4])
                             #pupilDiff[[2,4]].max(axis=1), pupilDiff[[2,4]].min(axis=1))
    pupilDiff[12] = np.where(pupilDiff[2] >= 0, pupilDiff[6], pupilDiff[8])
                             #pupilDiff[[6,8]].max(axis=1), pupilDiff[[6,8]].min(axis=1))
    print(pupilDiff[[1,3,5,7,9,10]])

    # slope
    x1 = (pupilLocation[1] + pupilLocation[3]) / 2
    y1 = (pupilLocation[2] + pupilLocation[4]) / 2
    x2 = (pupilLocation[5] + pupilLocation[7]) / 2
    y2 = (pupilLocation[6] + pupilLocation[8]) / 2
    pupilDiff[13] = ((y2 - y1) / (0.001 + x2 - x1))


    pupilDiff.to_csv('pupil_diff.csv')


    pixels = 11.7 / pupil_average
    print("pixels (In MM) = ", pixels)


    pupilDiff = round(pupilDiff * pixels,3)

    fig1 = plt.figure()
    plt.plot(pupilDiff[[9,10]]) #1,3,5,7
    plt.title("Pupil movement X axis")
    plt.ylabel("MM of movement")
    plt.xlabel("Frame")
    plt.ylim(-10, 10)
    plt.legend(['Left', 'Right']) #'LL', 'LR', 'RL', 'RR'])

    fig2 = plt.figure()
    plt.plot(pupilDiff[[11,12]]) #, df[countries].to_numpy())
    plt.ylim(-10, 10)
    plt.title("Pupil movement Y axis")
    plt.ylabel("MM of movement")
    plt.xlabel("Frame")
    plt.legend(['Left', 'Right'])


    # Left eye
    LeftEyeLookingRight = pd.to_numeric(pupilDiff[1]).idxmax()
    LeftEyeLookingDown  = pd.to_numeric(pupilDiff[2]).idxmax()
    LeftEyeLookingLeft  = pd.to_numeric(pupilDiff[3]).idxmin()
    LeftEyeLookingUp    = pd.to_numeric(pupilDiff[4]).idxmin()


    # Right eye
    RightEyeLookingRight = pd.to_numeric(pupilDiff[5]).idxmax()
    RightEyeLookingDown  = pd.to_numeric(pupilDiff[6]).idxmax()
    RightEyeLookingLeft  = pd.to_numeric(pupilDiff[7]).idxmin()
    RightEyeLookingUp    = pd.to_numeric(pupilDiff[8]).idxmin()


    print("Left eye images = ", LeftEyeLookingRight, LeftEyeLookingDown, LeftEyeLookingLeft, LeftEyeLookingUp)
    print("Right eye images = ", RightEyeLookingRight, RightEyeLookingDown, RightEyeLookingLeft, RightEyeLookingUp)

    ExtermeImageLeftEye = list([cv2.cvtColor(cv2.imread("Images/post-image-%d.jpg" % LeftEyeLookingRight), cv2.COLOR_BGR2RGB),
                                cv2.cvtColor(cv2.imread("Images/post-image-%d.jpg" % LeftEyeLookingLeft), cv2.COLOR_BGR2RGB),
                                cv2.cvtColor(cv2.imread("Images/post-image-%d.jpg" % LeftEyeLookingUp), cv2.COLOR_BGR2RGB),
                                cv2.cvtColor(cv2.imread("Images/post-image-%d.jpg" % LeftEyeLookingDown), cv2.COLOR_BGR2RGB)])

    ExtermeImageRightEye = list([cv2.cvtColor(cv2.imread("Images/post-image-%d.jpg" % RightEyeLookingRight), cv2.COLOR_BGR2RGB),
                                 cv2.cvtColor(cv2.imread("Images/post-image-%d.jpg" % RightEyeLookingLeft), cv2.COLOR_BGR2RGB),
                                 cv2.cvtColor(cv2.imread("Images/post-image-%d.jpg" % RightEyeLookingUp), cv2.COLOR_BGR2RGB),
                                 cv2.cvtColor(cv2.imread("Images/post-image-%d.jpg" % RightEyeLookingDown), cv2.COLOR_BGR2RGB)])


    # return the distances


    d = { 'direction': ['Right', 'Left', 'Up', 'Down'] ,
          'mm' : [abs(round(pd.to_numeric(pupilDiff[1]).max(),1)),
                  abs(round(pd.to_numeric(pupilDiff[3]).min(),1)),
                  abs(round(pd.to_numeric(pupilDiff[4]).min(),1)),
                  abs(round(pd.to_numeric(pupilDiff[2]).max(),1))
                  ]}
    ExteremeDistanceLeftEye = pd.DataFrame(data=d)

    d = {'direction': ['Right', 'Left', 'Up', 'Down'],
         'mm': [abs(round(pd.to_numeric(pupilDiff[5]).max(), 1)),
                abs(round(pd.to_numeric(pupilDiff[7]).min(), 1)),
                abs(round(pd.to_numeric(pupilDiff[8]).min(), 1)),
                abs(round(pd.to_numeric(pupilDiff[6]).max(), 1))
                ]}
    ExteremeDistanceRightEye = pd.DataFrame(data=d)



    print() #.idxmax(axis=0))
    # Upmost buttom limbus
    #
    return ExteremeDistanceLeftEye, ExteremeDistanceRightEye, ExtermeImageLeftEye, ExtermeImageRightEye, fig1, fig2 # lines


with gr.Blocks() as demo:
            gr.Markdown(
            """
            # Range of Motion Video Analysis
            Capture a video of the following looks: stright, left, right, up & down
            """)
            video1 = gr.Video()#source="webcam")

            b = gr.Button("Analyze Video")

            gr.Markdown(
                """
                # Left eye results (in mm):
                """)
            LeftEyeGallery = gr.Gallery(
                label="Left eye", show_label=False, elem_id="left_eye_gallery", columns=[4], rows=[1], object_fit="contain", height="auto")
        
            movementDataLeft = gr.Dataframe(ExteremeDistanceLeftEye)


            gr.Markdown(
                """
                # Right eye results (in mm):
                """)
            RightEyeGallery = gr.Gallery(
                label="Right eye", show_label=False, elem_id="right_eye_gallery", columns=[4], rows=[1], object_fit="contain", height="auto")
            movementDataRight = gr.Dataframe(ExteremeDistanceRightEye)

            plot1 = gr.Plot(label="Plot1")

            plot2 = gr.Plot(label="Plot2")

            out = [movementDataLeft, movementDataRight, LeftEyeGallery, RightEyeGallery, plot1, plot2]
            b.click(fn=handleVideo, inputs=video1, outputs=out)

demo.launch()