ziyangmai commited on
Commit
113884e
1 Parent(s): 6dd3263
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitignore +1 -0
  2. __pycache__/attn_ctrl.cpython-310.pyc +0 -0
  3. __pycache__/inference.cpython-310.pyc +0 -0
  4. __pycache__/train.cpython-310.pyc +0 -0
  5. app.py +7 -1
  6. assets/train/car_turn.mp4 +0 -0
  7. assets/train/dolly_zoom_out.mp4 +0 -0
  8. assets/train/orbit_shot.mp4 +0 -0
  9. assets/train/pan_up.mp4 +0 -0
  10. assets/train/run_up.mp4 +0 -0
  11. assets/train/santa_dance.mp4 +0 -0
  12. assets/train/train_ride.mp4 +0 -0
  13. assets/train/walk.mp4 +0 -0
  14. attn_ctrl.py +264 -0
  15. configs/config.yaml +67 -0
  16. dataset/__init__.py +5 -0
  17. dataset/__pycache__/__init__.cpython-310.pyc +0 -0
  18. dataset/__pycache__/cached_dataset.cpython-310.pyc +0 -0
  19. dataset/__pycache__/image_dataset.cpython-310.pyc +0 -0
  20. dataset/__pycache__/single_video_dataset.cpython-310.pyc +0 -0
  21. dataset/__pycache__/video_folder_dataset.cpython-310.pyc +0 -0
  22. dataset/__pycache__/video_json_dataset.cpython-310.pyc +0 -0
  23. dataset/cached_dataset.py +17 -0
  24. dataset/image_dataset.py +95 -0
  25. dataset/single_video_dataset.py +106 -0
  26. dataset/video_folder_dataset.py +90 -0
  27. dataset/video_json_dataset.py +183 -0
  28. inference.py +133 -0
  29. loss/__init__.py +4 -0
  30. loss/__pycache__/__init__.cpython-310.pyc +0 -0
  31. loss/__pycache__/base_loss.cpython-310.pyc +0 -0
  32. loss/__pycache__/debiased_hybrid_loss.cpython-310.pyc +0 -0
  33. loss/__pycache__/debiased_temporal_loss.cpython-310.pyc +0 -0
  34. loss/__pycache__/motion_distillation_loss.cpython-310.pyc +0 -0
  35. loss/base_loss.py +75 -0
  36. loss/debiased_hybrid_loss.py +149 -0
  37. loss/debiased_temporal_loss.py +86 -0
  38. loss/motion_distillation_loss.py +79 -0
  39. models/dit/latte_t2v.py +990 -0
  40. models/unet/__pycache__/motion_embeddings.cpython-310.pyc +0 -0
  41. models/unet/__pycache__/unet_3d_blocks.cpython-310.pyc +0 -0
  42. models/unet/__pycache__/unet_3d_condition.cpython-310.pyc +0 -0
  43. models/unet/motion_embeddings.py +283 -0
  44. models/unet/unet_3d_blocks.py +842 -0
  45. models/unet/unet_3d_condition.py +500 -0
  46. noise_init/__init__.py +4 -0
  47. noise_init/__pycache__/__init__.cpython-310.pyc +0 -0
  48. noise_init/__pycache__/blend_freq_init.cpython-310.pyc +0 -0
  49. noise_init/__pycache__/blend_init.cpython-310.pyc +0 -0
  50. noise_init/__pycache__/fft_init.cpython-310.pyc +0 -0
.gitignore ADDED
@@ -0,0 +1 @@
 
 
1
+ results/*
__pycache__/attn_ctrl.cpython-310.pyc ADDED
Binary file (5.63 kB). View file
 
__pycache__/inference.cpython-310.pyc ADDED
Binary file (3.09 kB). View file
 
__pycache__/train.cpython-310.pyc ADDED
Binary file (11.1 kB). View file
 
app.py CHANGED
@@ -14,7 +14,7 @@ from inference import inference as inference_main
14
  def train_model(video, config):
15
  output_dir = 'results'
16
  os.makedirs(output_dir, exist_ok=True)
17
- cur_save_dir = os.path.join(output_dir, str(len(os.listdir(output_dir))).zfill(2))
18
 
19
  config.dataset.single_video_path = video
20
  config.train.output_dir = cur_save_dir
@@ -100,6 +100,12 @@ def update_preview_video(checkpoint_dir):
100
 
101
 
102
  if __name__ == "__main__":
 
 
 
 
 
 
103
  inject_motion_embeddings_combinations = ['down 1280','up 1280','down 640','up 640']
104
  default_motion_embeddings_combinations = ['down 1280','up 1280']
105
 
 
14
  def train_model(video, config):
15
  output_dir = 'results'
16
  os.makedirs(output_dir, exist_ok=True)
17
+ cur_save_dir = os.path.join(output_dir, 'custom')
18
 
19
  config.dataset.single_video_path = video
20
  config.train.output_dir = cur_save_dir
 
100
 
101
 
102
  if __name__ == "__main__":
103
+
104
+ if os.path.exists('results/custom'):
105
+ os.system('rm -rf results/custom')
106
+ if os.path.exists('outputs'):
107
+ os.system('rm -rf outputs')
108
+
109
  inject_motion_embeddings_combinations = ['down 1280','up 1280','down 640','up 640']
110
  default_motion_embeddings_combinations = ['down 1280','up 1280']
111
 
assets/train/car_turn.mp4 ADDED
Binary file (560 kB). View file
 
assets/train/dolly_zoom_out.mp4 ADDED
Binary file (38.5 kB). View file
 
assets/train/orbit_shot.mp4 ADDED
Binary file (383 kB). View file
 
assets/train/pan_up.mp4 ADDED
Binary file (359 kB). View file
 
assets/train/run_up.mp4 ADDED
Binary file (104 kB). View file
 
assets/train/santa_dance.mp4 ADDED
Binary file (122 kB). View file
 
assets/train/train_ride.mp4 ADDED
Binary file (191 kB). View file
 
assets/train/walk.mp4 ADDED
Binary file (62.6 kB). View file
 
attn_ctrl.py ADDED
@@ -0,0 +1,264 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import abc
2
+
3
+ LOW_RESOURCE = False
4
+ import torch
5
+ import cv2
6
+ import torch
7
+ import os
8
+ import numpy as np
9
+ from collections import defaultdict
10
+ from functools import partial
11
+ from typing import Any, Dict, Optional
12
+
13
+ def register_attention_control(unet, config=None):
14
+
15
+ def BasicTransformerBlock_forward(
16
+ self,
17
+ hidden_states: torch.FloatTensor,
18
+ attention_mask: Optional[torch.FloatTensor] = None,
19
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
20
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
21
+ timestep: Optional[torch.LongTensor] = None,
22
+ cross_attention_kwargs: Dict[str, Any] = None,
23
+ class_labels: Optional[torch.LongTensor] = None,
24
+ added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
25
+ ) -> torch.FloatTensor:
26
+ # Notice that normalization is always applied before the real computation in the following blocks.
27
+ # 0. Self-Attention
28
+ batch_size = hidden_states.shape[0]
29
+
30
+ if self.norm_type == "ada_norm":
31
+ norm_hidden_states = self.norm1(hidden_states, timestep)
32
+ elif self.norm_type == "ada_norm_zero":
33
+ norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
34
+ hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype
35
+ )
36
+ elif self.norm_type in ["layer_norm", "layer_norm_i2vgen"]:
37
+ norm_hidden_states = self.norm1(hidden_states)
38
+ elif self.norm_type == "ada_norm_continuous":
39
+ norm_hidden_states = self.norm1(hidden_states, added_cond_kwargs["pooled_text_emb"])
40
+ elif self.norm_type == "ada_norm_single":
41
+ shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (
42
+ self.scale_shift_table[None] + timestep.reshape(batch_size, 6, -1)
43
+ ).chunk(6, dim=1)
44
+ norm_hidden_states = self.norm1(hidden_states)
45
+ norm_hidden_states = norm_hidden_states * (1 + scale_msa) + shift_msa
46
+ norm_hidden_states = norm_hidden_states.squeeze(1)
47
+ else:
48
+ raise ValueError("Incorrect norm used")
49
+
50
+ # save the origin_hidden_states w/o pos_embed, for the use of motion v embedding
51
+ origin_hidden_states = None
52
+ if self.pos_embed is not None or hasattr(self.attn1,'vSpatial'):
53
+ origin_hidden_states = norm_hidden_states.clone()
54
+ if cross_attention_kwargs is None:
55
+ cross_attention_kwargs = {}
56
+ cross_attention_kwargs["origin_hidden_states"] = origin_hidden_states
57
+
58
+ if self.pos_embed is not None:
59
+ norm_hidden_states = self.pos_embed(norm_hidden_states)
60
+
61
+
62
+ # 1. Retrieve lora scale.
63
+ lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0
64
+
65
+ # 2. Prepare GLIGEN inputs
66
+ cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {}
67
+ gligen_kwargs = cross_attention_kwargs.pop("gligen", None)
68
+
69
+ attn_output = self.attn1(
70
+ norm_hidden_states,
71
+ encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
72
+ attention_mask=attention_mask,
73
+ **cross_attention_kwargs,
74
+ )
75
+ if self.norm_type == "ada_norm_zero":
76
+ attn_output = gate_msa.unsqueeze(1) * attn_output
77
+ elif self.norm_type == "ada_norm_single":
78
+ attn_output = gate_msa * attn_output
79
+
80
+ hidden_states = attn_output + hidden_states
81
+ if hidden_states.ndim == 4:
82
+ hidden_states = hidden_states.squeeze(1)
83
+
84
+ # 2.5 GLIGEN Control
85
+ if gligen_kwargs is not None:
86
+ hidden_states = self.fuser(hidden_states, gligen_kwargs["objs"])
87
+
88
+ # 3. Cross-Attention
89
+ if self.attn2 is not None:
90
+ if self.norm_type == "ada_norm":
91
+ norm_hidden_states = self.norm2(hidden_states, timestep)
92
+ elif self.norm_type in ["ada_norm_zero", "layer_norm", "layer_norm_i2vgen"]:
93
+ norm_hidden_states = self.norm2(hidden_states)
94
+ elif self.norm_type == "ada_norm_single":
95
+ # For PixArt norm2 isn't applied here:
96
+ # https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L70C1-L76C103
97
+ norm_hidden_states = hidden_states
98
+ elif self.norm_type == "ada_norm_continuous":
99
+ norm_hidden_states = self.norm2(hidden_states, added_cond_kwargs["pooled_text_emb"])
100
+ else:
101
+ raise ValueError("Incorrect norm")
102
+
103
+ if self.pos_embed is not None and self.norm_type != "ada_norm_single":
104
+ # save the origin_hidden_states
105
+ origin_hidden_states = norm_hidden_states.clone()
106
+ norm_hidden_states = self.pos_embed(norm_hidden_states)
107
+ cross_attention_kwargs["origin_hidden_states"] = origin_hidden_states
108
+
109
+ attn_output = self.attn2(
110
+ norm_hidden_states,
111
+ encoder_hidden_states=encoder_hidden_states,
112
+ attention_mask=encoder_attention_mask,
113
+ **cross_attention_kwargs,
114
+ )
115
+ hidden_states = attn_output + hidden_states
116
+ # delete the origin_hidden_states
117
+ if cross_attention_kwargs is not None and "origin_hidden_states" in cross_attention_kwargs:
118
+ cross_attention_kwargs.pop("origin_hidden_states")
119
+
120
+ # 4. Feed-forward
121
+ # i2vgen doesn't have this norm 🤷‍♂️
122
+ if self.norm_type == "ada_norm_continuous":
123
+ norm_hidden_states = self.norm3(hidden_states, added_cond_kwargs["pooled_text_emb"])
124
+ elif not self.norm_type == "ada_norm_single":
125
+ norm_hidden_states = self.norm3(hidden_states)
126
+
127
+ if self.norm_type == "ada_norm_zero":
128
+ norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
129
+
130
+ if self.norm_type == "ada_norm_single":
131
+ norm_hidden_states = self.norm2(hidden_states)
132
+ norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp
133
+
134
+ if self._chunk_size is not None:
135
+ # "feed_forward_chunk_size" can be used to save memory
136
+ ff_output = _chunked_feed_forward(
137
+ self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size, lora_scale=lora_scale
138
+ )
139
+ else:
140
+ ff_output = self.ff(norm_hidden_states, scale=lora_scale)
141
+
142
+ if self.norm_type == "ada_norm_zero":
143
+ ff_output = gate_mlp.unsqueeze(1) * ff_output
144
+ elif self.norm_type == "ada_norm_single":
145
+ ff_output = gate_mlp * ff_output
146
+
147
+ hidden_states = ff_output + hidden_states
148
+ if hidden_states.ndim == 4:
149
+ hidden_states = hidden_states.squeeze(1)
150
+
151
+ return hidden_states
152
+
153
+
154
+ def temp_attn_forward(self, additional_info=None):
155
+ to_out = self.to_out
156
+ if type(to_out) is torch.nn.modules.container.ModuleList:
157
+ to_out = self.to_out[0]
158
+ else:
159
+ to_out = self.to_out
160
+
161
+ def forward(hidden_states, encoder_hidden_states=None, attention_mask=None,temb=None,origin_hidden_states=None):
162
+
163
+ residual = hidden_states
164
+
165
+ if self.spatial_norm is not None:
166
+ hidden_states = self.spatial_norm(hidden_states, temb)
167
+
168
+ input_ndim = hidden_states.ndim
169
+
170
+ if input_ndim == 4:
171
+ batch_size, channel, height, width = hidden_states.shape
172
+ hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
173
+
174
+ batch_size, sequence_length, _ = (
175
+ hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
176
+ )
177
+
178
+ attention_mask = self.prepare_attention_mask(attention_mask, sequence_length, batch_size)
179
+
180
+ if self.group_norm is not None:
181
+ hidden_states = self.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
182
+
183
+ if encoder_hidden_states is None:
184
+ encoder_hidden_states = hidden_states
185
+ elif self.norm_cross:
186
+ encoder_hidden_states = self.norm_encoder_hidden_states(encoder_hidden_states)
187
+
188
+ query = self.to_q(hidden_states)
189
+ key = self.to_k(encoder_hidden_states)
190
+
191
+ # strategies to manipulate the motion value embedding
192
+ if additional_info is not None:
193
+ # empirically, in the inference stage of camera motion
194
+ # discarding the motion value embedding improves the text similarity of the generated video
195
+ if additional_info['removeMFromV']:
196
+ value = self.to_v(origin_hidden_states)
197
+ elif hasattr(self,'vSpatial'):
198
+ # during inference, the debiasing operation helps to generate more diverse videos
199
+ # refer to the 'Figure.3 Right' in the paper for more details
200
+ if additional_info['vSpatial_frameSubtraction']:
201
+ value = self.to_v(self.vSpatial.forward_frameSubtraction(origin_hidden_states))
202
+ # during training, do not apply debias operation for motion learning
203
+ else:
204
+ value = self.to_v(self.vSpatial(origin_hidden_states))
205
+ else:
206
+ value = self.to_v(origin_hidden_states)
207
+ else:
208
+ value = self.to_v(encoder_hidden_states)
209
+
210
+
211
+ query = self.head_to_batch_dim(query)
212
+ key = self.head_to_batch_dim(key)
213
+ value = self.head_to_batch_dim(value)
214
+
215
+ attention_probs = self.get_attention_scores(query, key, attention_mask)
216
+
217
+ hidden_states = torch.bmm(attention_probs, value)
218
+ hidden_states = self.batch_to_head_dim(hidden_states)
219
+
220
+ # linear proj
221
+ hidden_states = to_out(hidden_states)
222
+
223
+ if input_ndim == 4:
224
+ hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
225
+
226
+ if self.residual_connection:
227
+ hidden_states = hidden_states + residual
228
+
229
+ hidden_states = hidden_states / self.rescale_output_factor
230
+
231
+ return hidden_states
232
+ return forward
233
+
234
+ def register_recr(net_, count, name, config=None):
235
+
236
+ if net_.__class__.__name__ == 'BasicTransformerBlock':
237
+ BasicTransformerBlock_forward_ = partial(BasicTransformerBlock_forward, net_)
238
+ net_.forward = BasicTransformerBlock_forward_
239
+
240
+ if net_.__class__.__name__ == 'Attention':
241
+ block_name = name.split('.attn')[0]
242
+ if config is not None and block_name in set([l.split('.attn')[0].split('.pos_embed')[0] for l in config.model.embedding_layers]):
243
+ additional_info = {}
244
+ additional_info['layer_name'] = name
245
+ additional_info['removeMFromV'] = config.strategy.get('removeMFromV', False)
246
+ additional_info['vSpatial_frameSubtraction'] = config.strategy.get('vSpatial_frameSubtraction', False)
247
+ net_.forward = temp_attn_forward(net_, additional_info)
248
+ print('register Motion V embedding at ', block_name)
249
+ return count + 1
250
+ else:
251
+ return count
252
+
253
+ elif hasattr(net_, 'children'):
254
+ for net_name, net__ in dict(net_.named_children()).items():
255
+ count = register_recr(net__, count, name = name + '.' + net_name, config=config)
256
+ return count
257
+
258
+ sub_nets = unet.named_children()
259
+
260
+ for net in sub_nets:
261
+ register_recr(net[1], 0,name = net[0], config=config)
262
+
263
+
264
+
configs/config.yaml ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ model:
2
+ type: unet
3
+ pretrained_model_path: cerspense/zeroscope_v2_576w
4
+ motion_embeddings:
5
+ combinations:
6
+ - - down
7
+ - 1280
8
+ - - up
9
+ - 1280
10
+ # unet can be either 'videoCrafter2' or 'zeroscope_v2_576w', the former produces better video quality
11
+ unet: videoCrafter2
12
+
13
+ train:
14
+ output_dir: ./results
15
+ validation_steps: 2000
16
+ checkpointing_steps: 50
17
+ checkpointing_start: 200
18
+ train_batch_size: 1
19
+ max_train_steps: 400
20
+ gradient_accumulation_steps: 1
21
+ cache_latents: true
22
+ cached_latent_dir: null
23
+ logger_type: tensorboard
24
+ mixed_precision: fp16
25
+ use_8bit_adam: false
26
+ resume_from_checkpoint: null
27
+ resume_step: null
28
+
29
+ dataset:
30
+ type:
31
+ - single_video
32
+ single_video_path: ./assets/car-roundabout-24.mp4
33
+ single_video_prompt: 'A car turnaround in a city street'
34
+ width: 576
35
+ height: 320
36
+ n_sample_frames: 24
37
+ fps: 8
38
+ sample_start_idx: 1
39
+ frame_step: 1
40
+ use_bucketing: false
41
+ use_caption: false
42
+
43
+ loss:
44
+ type: BaseLoss
45
+ learning_rate: 0.02
46
+ lr_scheduler: constant
47
+ lr_warmup_steps: 0
48
+
49
+ noise_init:
50
+ type: BlendInit
51
+ noise_prior: 0.5
52
+
53
+ val:
54
+ prompt:
55
+ - "A skateboard slides along a city lane"
56
+ negative_prompt: ""
57
+ sample_preview: true
58
+ width: 576
59
+ height: 320
60
+ num_frames: 24
61
+ num_inference_steps: 30
62
+ guidance_scale: 12.0
63
+ seeds: [0]
64
+
65
+ strategy:
66
+ vSpatial_frameSubtraction: false
67
+ removeMFromV: false
dataset/__init__.py ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ from .cached_dataset import CachedDataset
2
+ from .image_dataset import ImageDataset
3
+ from .single_video_dataset import SingleVideoDataset
4
+ from .video_folder_dataset import VideoFolderDataset
5
+ from .video_json_dataset import VideoJsonDataset
dataset/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (455 Bytes). View file
 
dataset/__pycache__/cached_dataset.cpython-310.pyc ADDED
Binary file (1.33 kB). View file
 
dataset/__pycache__/image_dataset.cpython-310.pyc ADDED
Binary file (2.88 kB). View file
 
dataset/__pycache__/single_video_dataset.cpython-310.pyc ADDED
Binary file (3.63 kB). View file
 
dataset/__pycache__/video_folder_dataset.cpython-310.pyc ADDED
Binary file (2.97 kB). View file
 
dataset/__pycache__/video_json_dataset.cpython-310.pyc ADDED
Binary file (4.59 kB). View file
 
dataset/cached_dataset.py ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from utils.dataset_utils import *
2
+
3
+ class CachedDataset(Dataset):
4
+ def __init__(self,cache_dir: str = ''):
5
+ self.cache_dir = cache_dir
6
+ self.cached_data_list = self.get_files_list()
7
+
8
+ def get_files_list(self):
9
+ tensors_list = [f"{self.cache_dir}/{x}" for x in os.listdir(self.cache_dir) if x.endswith('.pt')]
10
+ return sorted(tensors_list)
11
+
12
+ def __len__(self):
13
+ return len(self.cached_data_list)
14
+
15
+ def __getitem__(self, index):
16
+ cached_latent = torch.load(self.cached_data_list[index], map_location='cuda:0')
17
+ return cached_latent
dataset/image_dataset.py ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from utils.dataset_utils import *
2
+
3
+ class ImageDataset(Dataset):
4
+
5
+ def __init__(
6
+ self,
7
+ tokenizer = None,
8
+ width: int = 256,
9
+ height: int = 256,
10
+ base_width: int = 256,
11
+ base_height: int = 256,
12
+ use_caption: bool = False,
13
+ image_dir: str = '',
14
+ single_img_prompt: str = '',
15
+ use_bucketing: bool = False,
16
+ fallback_prompt: str = '',
17
+ **kwargs
18
+ ):
19
+ self.tokenizer = tokenizer
20
+ self.img_types = (".png", ".jpg", ".jpeg", '.bmp')
21
+ self.use_bucketing = use_bucketing
22
+
23
+ self.image_dir = self.get_images_list(image_dir)
24
+ self.fallback_prompt = fallback_prompt
25
+
26
+ self.use_caption = use_caption
27
+ self.single_img_prompt = single_img_prompt
28
+
29
+ self.width = width
30
+ self.height = height
31
+
32
+ def get_images_list(self, image_dir):
33
+ if os.path.exists(image_dir):
34
+ imgs = [x for x in os.listdir(image_dir) if x.endswith(self.img_types)]
35
+ full_img_dir = []
36
+
37
+ for img in imgs:
38
+ full_img_dir.append(f"{image_dir}/{img}")
39
+
40
+ return sorted(full_img_dir)
41
+
42
+ return ['']
43
+
44
+ def image_batch(self, index):
45
+ train_data = self.image_dir[index]
46
+ img = train_data
47
+
48
+ try:
49
+ img = torchvision.io.read_image(img, mode=torchvision.io.ImageReadMode.RGB)
50
+ except:
51
+ img = T.transforms.PILToTensor()(Image.open(img).convert("RGB"))
52
+
53
+ width = self.width
54
+ height = self.height
55
+
56
+ if self.use_bucketing:
57
+ _, h, w = img.shape
58
+ width, height = sensible_buckets(width, height, w, h)
59
+
60
+ resize = T.transforms.Resize((height, width), antialias=True)
61
+
62
+ img = resize(img)
63
+ img = repeat(img, 'c h w -> f c h w', f=16)
64
+
65
+ prompt = get_text_prompt(
66
+ file_path=train_data,
67
+ text_prompt=self.single_img_prompt,
68
+ fallback_prompt=self.fallback_prompt,
69
+ ext_types=self.img_types,
70
+ use_caption=True
71
+ )
72
+ prompt_ids = get_prompt_ids(prompt, self.tokenizer)
73
+
74
+ return img, prompt, prompt_ids
75
+
76
+ @staticmethod
77
+ def __getname__(): return 'image'
78
+
79
+ def __len__(self):
80
+ # Image directory
81
+ if os.path.exists(self.image_dir[0]):
82
+ return len(self.image_dir)
83
+ else:
84
+ return 0
85
+
86
+ def __getitem__(self, index):
87
+ img, prompt, prompt_ids = self.image_batch(index)
88
+ example = {
89
+ "pixel_values": (img / 127.5 - 1.0),
90
+ "prompt_ids": prompt_ids[0],
91
+ "text_prompt": prompt,
92
+ 'dataset': self.__getname__()
93
+ }
94
+
95
+ return example
dataset/single_video_dataset.py ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from utils.dataset_utils import *
2
+
3
+ class SingleVideoDataset(Dataset):
4
+ def __init__(
5
+ self,
6
+ tokenizer = None,
7
+ width: int = 256,
8
+ height: int = 256,
9
+ n_sample_frames: int = 4,
10
+ frame_step: int = 1,
11
+ single_video_path: str = "",
12
+ single_video_prompt: str = "",
13
+ use_caption: bool = False,
14
+ use_bucketing: bool = False,
15
+ **kwargs
16
+ ):
17
+ self.tokenizer = tokenizer
18
+ self.use_bucketing = use_bucketing
19
+ self.frames = []
20
+ self.index = 1
21
+
22
+ self.vid_types = (".mp4", ".avi", ".mov", ".webm", ".flv", ".mjpeg")
23
+ self.n_sample_frames = n_sample_frames
24
+ self.frame_step = frame_step
25
+
26
+ self.single_video_path = single_video_path
27
+ self.single_video_prompt = single_video_prompt
28
+
29
+ self.width = width
30
+ self.height = height
31
+
32
+ def create_video_chunks(self):
33
+ vr = decord.VideoReader(self.single_video_path)
34
+ vr_range = range(0, len(vr), self.frame_step)
35
+
36
+ self.frames = list(self.chunk(vr_range, self.n_sample_frames))
37
+ return self.frames
38
+
39
+ def chunk(self, it, size):
40
+ it = iter(it)
41
+ return iter(lambda: tuple(islice(it, size)), ())
42
+
43
+ def get_frame_batch(self, vr, resize=None):
44
+ index = self.index
45
+ frames = vr.get_batch(self.frames[self.index])
46
+
47
+ if type(frames) == decord.ndarray.NDArray:
48
+ frames = torch.from_numpy(frames.asnumpy())
49
+
50
+ video = rearrange(frames, "f h w c -> f c h w")
51
+
52
+ if resize is not None: video = resize(video)
53
+ return video
54
+
55
+ def get_frame_buckets(self, vr):
56
+ h, w, c = vr[0].shape
57
+ width, height = sensible_buckets(self.width, self.height, w, h)
58
+ resize = T.transforms.Resize((height, width), antialias=True)
59
+
60
+ return resize
61
+
62
+ def process_video_wrapper(self, vid_path):
63
+ video, vr = process_video(
64
+ vid_path,
65
+ self.use_bucketing,
66
+ self.width,
67
+ self.height,
68
+ self.get_frame_buckets,
69
+ self.get_frame_batch
70
+ )
71
+
72
+ return video, vr
73
+
74
+ def single_video_batch(self, index):
75
+ train_data = self.single_video_path
76
+ self.index = index
77
+
78
+ if train_data.endswith(self.vid_types):
79
+ video, _ = self.process_video_wrapper(train_data)
80
+
81
+ prompt = self.single_video_prompt
82
+ prompt_ids = get_prompt_ids(prompt, self.tokenizer)
83
+
84
+ return video, prompt, prompt_ids
85
+ else:
86
+ raise ValueError(f"Single video is not a video type. Types: {self.vid_types}")
87
+
88
+ @staticmethod
89
+ def __getname__(): return 'single_video'
90
+
91
+ def __len__(self):
92
+
93
+ return len(self.create_video_chunks())
94
+
95
+ def __getitem__(self, index):
96
+
97
+ video, prompt, prompt_ids = self.single_video_batch(index)
98
+
99
+ example = {
100
+ "pixel_values": (video / 127.5 - 1.0),
101
+ "prompt_ids": prompt_ids[0],
102
+ "text_prompt": prompt,
103
+ 'dataset': self.__getname__()
104
+ }
105
+
106
+ return example
dataset/video_folder_dataset.py ADDED
@@ -0,0 +1,90 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from utils.dataset_utils import *
2
+
3
+ class VideoFolderDataset(Dataset):
4
+ def __init__(
5
+ self,
6
+ tokenizer=None,
7
+ width: int = 256,
8
+ height: int = 256,
9
+ n_sample_frames: int = 16,
10
+ fps: int = 8,
11
+ path: str = "./data",
12
+ fallback_prompt: str = "",
13
+ use_bucketing: bool = False,
14
+ **kwargs
15
+ ):
16
+ self.tokenizer = tokenizer
17
+ self.use_bucketing = use_bucketing
18
+
19
+ self.fallback_prompt = fallback_prompt
20
+
21
+ self.video_files = glob(f"{path}/*.mp4")
22
+
23
+ self.width = width
24
+ self.height = height
25
+
26
+ self.n_sample_frames = n_sample_frames
27
+ self.fps = fps
28
+
29
+ def get_frame_buckets(self, vr):
30
+ h, w, c = vr[0].shape
31
+ width, height = sensible_buckets(self.width, self.height, w, h)
32
+ resize = T.transforms.Resize((height, width), antialias=True)
33
+
34
+ return resize
35
+
36
+ def get_frame_batch(self, vr, resize=None):
37
+ n_sample_frames = self.n_sample_frames
38
+ native_fps = vr.get_avg_fps()
39
+
40
+ every_nth_frame = max(1, round(native_fps / self.fps))
41
+ every_nth_frame = min(len(vr), every_nth_frame)
42
+
43
+ effective_length = len(vr) // every_nth_frame
44
+ if effective_length < n_sample_frames:
45
+ n_sample_frames = effective_length
46
+
47
+ effective_idx = random.randint(0, (effective_length - n_sample_frames))
48
+ idxs = every_nth_frame * np.arange(effective_idx, effective_idx + n_sample_frames)
49
+
50
+ video = vr.get_batch(idxs)
51
+ video = rearrange(video, "f h w c -> f c h w")
52
+
53
+ if resize is not None: video = resize(video)
54
+ return video, vr
55
+
56
+ def process_video_wrapper(self, vid_path):
57
+ video, vr = process_video(
58
+ vid_path,
59
+ self.use_bucketing,
60
+ self.width,
61
+ self.height,
62
+ self.get_frame_buckets,
63
+ self.get_frame_batch
64
+ )
65
+ return video, vr
66
+
67
+ def get_prompt_ids(self, prompt):
68
+ return self.tokenizer(
69
+ prompt,
70
+ truncation=True,
71
+ padding="max_length",
72
+ max_length=self.tokenizer.model_max_length,
73
+ return_tensors="pt",
74
+ ).input_ids
75
+
76
+ @staticmethod
77
+ def __getname__(): return 'folder'
78
+
79
+ def __len__(self):
80
+ return len(self.video_files)
81
+
82
+ def __getitem__(self, index):
83
+
84
+ video, _ = self.process_video_wrapper(self.video_files[index])
85
+
86
+ prompt = self.fallback_prompt
87
+
88
+ prompt_ids = self.get_prompt_ids(prompt)
89
+
90
+ return {"pixel_values": (video[0] / 127.5 - 1.0), "prompt_ids": prompt_ids[0], "text_prompt": prompt, 'dataset': self.__getname__()}
dataset/video_json_dataset.py ADDED
@@ -0,0 +1,183 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from utils.dataset_utils import *
2
+
3
+ # https://github.com/ExponentialML/Video-BLIP2-Preprocessor
4
+ class VideoJsonDataset(Dataset):
5
+ def __init__(
6
+ self,
7
+ tokenizer = None,
8
+ width: int = 256,
9
+ height: int = 256,
10
+ n_sample_frames: int = 4,
11
+ sample_start_idx: int = 1,
12
+ frame_step: int = 1,
13
+ json_path: str ="",
14
+ json_data = None,
15
+ vid_data_key: str = "video_path",
16
+ preprocessed: bool = False,
17
+ use_bucketing: bool = False,
18
+ **kwargs
19
+ ):
20
+ self.vid_types = (".mp4", ".avi", ".mov", ".webm", ".flv", ".mjpeg")
21
+ self.use_bucketing = use_bucketing
22
+ self.tokenizer = tokenizer
23
+ self.preprocessed = preprocessed
24
+
25
+ self.vid_data_key = vid_data_key
26
+ self.train_data = self.load_from_json(json_path, json_data)
27
+
28
+ self.width = width
29
+ self.height = height
30
+
31
+ self.n_sample_frames = n_sample_frames
32
+ self.sample_start_idx = sample_start_idx
33
+ self.frame_step = frame_step
34
+
35
+ def build_json(self, json_data):
36
+ extended_data = []
37
+ for data in json_data['data']:
38
+ for nested_data in data['data']:
39
+ self.build_json_dict(
40
+ data,
41
+ nested_data,
42
+ extended_data
43
+ )
44
+ json_data = extended_data
45
+ return json_data
46
+
47
+ def build_json_dict(self, data, nested_data, extended_data):
48
+ clip_path = nested_data['clip_path'] if 'clip_path' in nested_data else None
49
+
50
+ extended_data.append({
51
+ self.vid_data_key: data[self.vid_data_key],
52
+ 'frame_index': nested_data['frame_index'],
53
+ 'prompt': nested_data['prompt'],
54
+ 'clip_path': clip_path
55
+ })
56
+
57
+ def load_from_json(self, path, json_data):
58
+ try:
59
+ with open(path) as jpath:
60
+ print(f"Loading JSON from {path}")
61
+ json_data = json.load(jpath)
62
+
63
+ return self.build_json(json_data)
64
+
65
+ except:
66
+ self.train_data = []
67
+ print("Non-existant JSON path. Skipping.")
68
+
69
+ def validate_json(self, base_path, path):
70
+ return os.path.exists(f"{base_path}/{path}")
71
+
72
+ def get_frame_range(self, vr):
73
+ return get_video_frames(
74
+ vr,
75
+ self.sample_start_idx,
76
+ self.frame_step,
77
+ self.n_sample_frames
78
+ )
79
+
80
+ def get_vid_idx(self, vr, vid_data=None):
81
+ frames = self.n_sample_frames
82
+
83
+ if vid_data is not None:
84
+ idx = vid_data['frame_index']
85
+ else:
86
+ idx = self.sample_start_idx
87
+
88
+ return idx
89
+
90
+ def get_frame_buckets(self, vr):
91
+ _, h, w = vr[0].shape
92
+ width, height = sensible_buckets(self.width, self.height, h, w)
93
+ # width, height = self.width, self.height
94
+ resize = T.transforms.Resize((height, width), antialias=True)
95
+
96
+ return resize
97
+
98
+ def get_frame_batch(self, vr, resize=None):
99
+ frame_range = self.get_frame_range(vr)
100
+ frames = vr.get_batch(frame_range)
101
+ video = rearrange(frames, "f h w c -> f c h w")
102
+
103
+ if resize is not None: video = resize(video)
104
+ return video
105
+
106
+ def process_video_wrapper(self, vid_path):
107
+ video, vr = process_video(
108
+ vid_path,
109
+ self.use_bucketing,
110
+ self.width,
111
+ self.height,
112
+ self.get_frame_buckets,
113
+ self.get_frame_batch
114
+ )
115
+
116
+ return video, vr
117
+
118
+ def train_data_batch(self, index):
119
+
120
+ # If we are training on individual clips.
121
+ if 'clip_path' in self.train_data[index] and \
122
+ self.train_data[index]['clip_path'] is not None:
123
+
124
+ vid_data = self.train_data[index]
125
+
126
+ clip_path = vid_data['clip_path']
127
+
128
+ # Get video prompt
129
+ prompt = vid_data['prompt']
130
+
131
+ video, _ = self.process_video_wrapper(clip_path)
132
+
133
+ prompt_ids = get_prompt_ids(prompt, self.tokenizer)
134
+
135
+ return video, prompt, prompt_ids
136
+
137
+ # Assign train data
138
+ train_data = self.train_data[index]
139
+
140
+ # Get the frame of the current index.
141
+ self.sample_start_idx = train_data['frame_index']
142
+
143
+ # Initialize resize
144
+ resize = None
145
+
146
+ video, vr = self.process_video_wrapper(train_data[self.vid_data_key])
147
+
148
+ # Get video prompt
149
+ prompt = train_data['prompt']
150
+ vr.seek(0)
151
+
152
+ prompt_ids = get_prompt_ids(prompt, self.tokenizer)
153
+
154
+ return video, prompt, prompt_ids
155
+
156
+ @staticmethod
157
+ def __getname__(): return 'json'
158
+
159
+ def __len__(self):
160
+ if self.train_data is not None:
161
+ return len(self.train_data)
162
+ else:
163
+ return 0
164
+
165
+ def __getitem__(self, index):
166
+
167
+ # Initialize variables
168
+ video = None
169
+ prompt = None
170
+ prompt_ids = None
171
+
172
+ # Use default JSON training
173
+ if self.train_data is not None:
174
+ video, prompt, prompt_ids = self.train_data_batch(index)
175
+
176
+ example = {
177
+ "pixel_values": (video / 127.5 - 1.0),
178
+ "prompt_ids": prompt_ids[0],
179
+ "text_prompt": prompt,
180
+ 'dataset': self.__getname__()
181
+ }
182
+
183
+ return example
inference.py ADDED
@@ -0,0 +1,133 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from diffusers import DiffusionPipeline, DPMSolverMultistepScheduler
3
+ from train import export_to_video
4
+ from models.unet.motion_embeddings import load_motion_embeddings
5
+ from noise_init.blend_init import BlendInit
6
+ from noise_init.blend_freq_init import BlendFreqInit
7
+ from noise_init.fft_init import FFTInit
8
+ from noise_init.freq_init import FreqInit
9
+ from attn_ctrl import register_attention_control
10
+ import numpy as np
11
+ import os
12
+ from omegaconf import OmegaConf
13
+
14
+ def get_pipe(embedding_dir='baseline',config=None,noisy_latent=None, video_round=None):
15
+
16
+ # load video generation model
17
+ pipe = DiffusionPipeline.from_pretrained(config.model.pretrained_model_path,torch_dtype=torch.float16)
18
+
19
+ # use videocrafterv2 unet
20
+ if config.model.unet == 'videoCrafter2':
21
+ from models.unet.unet_3d_condition import UNet3DConditionModel
22
+ # unet = UNet3DConditionModel.from_pretrained("adamdad/videocrafterv2_diffusers",subfolder='unet',torch_dtype=torch.float16)
23
+ unet = UNet3DConditionModel.from_pretrained("adamdad/videocrafterv2_diffusers",torch_dtype=torch.float16)
24
+ pipe.unet = unet
25
+
26
+ # pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
27
+ pipe.enable_model_cpu_offload()
28
+
29
+ # memory optimization
30
+ pipe.enable_vae_slicing()
31
+
32
+ # if 'vanilla' not in embedding_dir:
33
+
34
+ noisy_latent = torch.load(f'{embedding_dir}/cached_latents/cached_0.pt')['inversion_noise'][None,]
35
+ if video_round is None:
36
+ motion_embed = torch.load(f'{embedding_dir}/motion_embed.pt')
37
+ else:
38
+ motion_embed = torch.load(f'{embedding_dir}/{video_round}/motion_embed.pt')
39
+ load_motion_embeddings(
40
+ pipe.unet,
41
+ motion_embed,
42
+ )
43
+ config.model['embedding_layers'] = list(motion_embed.keys())
44
+
45
+ return pipe, config, noisy_latent
46
+
47
+ def inference(embedding_dir='vanilla',
48
+ video_round=None,
49
+ prompt=None,
50
+ save_dir=None,
51
+ seed=None,
52
+ motion_type=None,
53
+ inference_steps=30
54
+ ):
55
+
56
+ # check motion type is valid
57
+ if motion_type != 'camera' and \
58
+ motion_type != 'object' and \
59
+ motion_type != 'hybrid':
60
+ raise ValueError('Invalid motion type')
61
+
62
+ if seed is None:
63
+ seed = 0
64
+
65
+ # load motion embedding
66
+ noisy_latent = None
67
+
68
+ config = OmegaConf.load(f'{embedding_dir}/config.yaml')
69
+
70
+
71
+ # different motion type assigns different strategy
72
+ if motion_type == 'camera':
73
+ config['strategy']['removeMFromV'] = True
74
+
75
+ elif motion_type == 'object' or motion_type == 'hybrid':
76
+ config['strategy']['vSpatial_frameSubtraction'] = True
77
+
78
+
79
+ pipe, config, noisy_latent = get_pipe(embedding_dir=embedding_dir,config=config,noisy_latent=noisy_latent,video_round=video_round)
80
+ n_frames = config.val.num_frames
81
+
82
+ shape = (config.val.height,config.val.width)
83
+ os.makedirs(save_dir,exist_ok=True)
84
+
85
+
86
+ cur_save_dir = f'{save_dir}/{"_".join(prompt.split())}.mp4'
87
+
88
+ register_attention_control(pipe.unet,config=config)
89
+
90
+ if noisy_latent is not None:
91
+ torch.manual_seed(seed)
92
+ noise = torch.randn_like(noisy_latent)
93
+ init_noise = BlendInit(noisy_latent, noise, noise_prior=0.5)
94
+ else:
95
+ init_noise = None
96
+
97
+ input_init_noise = init_noise.clone() if not init_noise is None else None
98
+ video_frames = pipe(
99
+ prompt=prompt,
100
+ num_inference_steps=inference_steps,
101
+ guidance_scale=12,
102
+ height=shape[0],
103
+ width=shape[1],
104
+ num_frames=n_frames,
105
+ generator=torch.Generator("cuda").manual_seed(seed),
106
+ latents=input_init_noise,
107
+ ).frames[0]
108
+
109
+ video_path = export_to_video(video_frames,output_video_path=cur_save_dir,fps=8)
110
+
111
+ return video_path
112
+
113
+
114
+ if __name__ =="__main__":
115
+
116
+ prompts = ["A skateboard slides along a city lane",
117
+ "A tank is running in the desert.",
118
+ "A toy train chugs around a roundabout tree"]
119
+
120
+
121
+ embedding_dir = './results'
122
+ video_round = 'checkpoint-250'
123
+ save_dir = f'outputs'
124
+
125
+ inference(
126
+ embedding_dir=embedding_dir,
127
+ prompt=prompts,
128
+ video_round=video_round,
129
+ save_dir=save_dir,
130
+ motion_type='hybrid',
131
+ seed=100
132
+ )
133
+
loss/__init__.py ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ from .base_loss import BaseLoss
2
+ from .debiased_hybrid_loss import DebiasedHybridLoss
3
+ from .debiased_temporal_loss import DebiasedTemporalLoss
4
+ from .motion_distillation_loss import MotionDistillationLoss
loss/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (408 Bytes). View file
 
loss/__pycache__/base_loss.cpython-310.pyc ADDED
Binary file (1.5 kB). View file
 
loss/__pycache__/debiased_hybrid_loss.cpython-310.pyc ADDED
Binary file (3.13 kB). View file
 
loss/__pycache__/debiased_temporal_loss.cpython-310.pyc ADDED
Binary file (1.83 kB). View file
 
loss/__pycache__/motion_distillation_loss.cpython-310.pyc ADDED
Binary file (1.75 kB). View file
 
loss/base_loss.py ADDED
@@ -0,0 +1,75 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn.functional as F
3
+ from utils.func_utils import tensor_to_vae_latent, sample_noise
4
+
5
+ def BaseLoss(
6
+ train_loss_temporal,
7
+ accelerator,
8
+ optimizers,
9
+ lr_schedulers,
10
+ unet,
11
+ vae,
12
+ text_encoder,
13
+ noise_scheduler,
14
+ batch,
15
+ step,
16
+ config
17
+ ):
18
+ cache_latents = config.train.cache_latents
19
+
20
+ if not cache_latents:
21
+ latents = tensor_to_vae_latent(batch["pixel_values"], vae)
22
+ else:
23
+ latents = batch["latents"]
24
+
25
+ # Sample noise that we'll add to the latents
26
+ # use_offset_noise = use_offset_noise and not rescale_schedule
27
+
28
+ noise = sample_noise(latents, 0.1, False)
29
+ bsz = latents.shape[0]
30
+
31
+ # Sample a random timestep for each video
32
+ timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device)
33
+ timesteps = timesteps.long()
34
+
35
+ # Add noise to the latents according to the noise magnitude at each timestep
36
+ # (this is the forward diffusion process)
37
+ noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)
38
+
39
+ # *Potentially* Fixes gradient checkpointing training.
40
+ # See: https://github.com/prigoyal/pytorch_memonger/blob/master/tutorial/Checkpointing_for_PyTorch_models.ipynb
41
+ # if kwargs.get('eval_train', False):
42
+ # unet.eval()
43
+ # text_encoder.eval()
44
+
45
+ # Encode text embeddings
46
+ token_ids = batch['prompt_ids']
47
+ encoder_hidden_states = text_encoder(token_ids)[0]
48
+ detached_encoder_state = encoder_hidden_states.clone().detach()
49
+
50
+ # Get the target for loss depending on the prediction type
51
+ if noise_scheduler.config.prediction_type == "epsilon":
52
+ target = noise
53
+
54
+ elif noise_scheduler.config.prediction_type == "v_prediction":
55
+ target = noise_scheduler.get_velocity(latents, noise, timesteps)
56
+
57
+ else:
58
+ raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}")
59
+
60
+ encoder_hidden_states = detached_encoder_state
61
+
62
+
63
+ # optimization
64
+ model_pred = unet(noisy_latents, timesteps, encoder_hidden_states=encoder_hidden_states).sample
65
+ loss_temporal = F.mse_loss(model_pred.float(), target.float(), reduction="mean")
66
+
67
+ avg_loss_temporal = accelerator.gather(loss_temporal.repeat(config.train.train_batch_size)).mean()
68
+ train_loss_temporal += avg_loss_temporal.item() / config.train.gradient_accumulation_steps
69
+
70
+ accelerator.backward(loss_temporal)
71
+ optimizers[0].step()
72
+ lr_schedulers[0].step()
73
+
74
+ return loss_temporal, train_loss_temporal
75
+
loss/debiased_hybrid_loss.py ADDED
@@ -0,0 +1,149 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torchvision import transforms
3
+ import torch.nn.functional as F
4
+ import random
5
+
6
+ from utils.lora import extract_lora_child_module
7
+ from utils.func_utils import tensor_to_vae_latent, sample_noise
8
+
9
+ def DebiasedHybridLoss(
10
+ train_loss_temporal,
11
+ accelerator,
12
+ optimizers,
13
+ lr_schedulers,
14
+ unet,
15
+ vae,
16
+ text_encoder,
17
+ noise_scheduler,
18
+ batch,
19
+ step,
20
+ config,
21
+ random_hflip_img=False,
22
+ spatial_lora_num=1
23
+ ):
24
+ mask_spatial_lora = random.uniform(0, 1) < 0.2
25
+ cache_latents = config.train.cache_latents
26
+
27
+
28
+
29
+ if not cache_latents:
30
+ latents = tensor_to_vae_latent(batch["pixel_values"], vae)
31
+ else:
32
+ latents = batch["latents"]
33
+
34
+ # Sample noise that we'll add to the latents
35
+ # use_offset_noise = use_offset_noise and not rescale_schedule
36
+
37
+ noise = sample_noise(latents, 0.1, False)
38
+ bsz = latents.shape[0]
39
+
40
+ # Sample a random timestep for each video
41
+ timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device)
42
+ timesteps = timesteps.long()
43
+
44
+ # Add noise to the latents according to the noise magnitude at each timestep
45
+ # (this is the forward diffusion process)
46
+ noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)
47
+
48
+ # *Potentially* Fixes gradient checkpointing training.
49
+ # See: https://github.com/prigoyal/pytorch_memonger/blob/master/tutorial/Checkpointing_for_PyTorch_models.ipynb
50
+ # if kwargs.get('eval_train', False):
51
+ # unet.eval()
52
+ # text_encoder.eval()
53
+
54
+ # Encode text embeddings
55
+ token_ids = batch['prompt_ids']
56
+ encoder_hidden_states = text_encoder(token_ids)[0]
57
+ detached_encoder_state = encoder_hidden_states.clone().detach()
58
+
59
+ # Get the target for loss depending on the prediction type
60
+ if noise_scheduler.config.prediction_type == "epsilon":
61
+ target = noise
62
+
63
+ elif noise_scheduler.config.prediction_type == "v_prediction":
64
+ target = noise_scheduler.get_velocity(latents, noise, timesteps)
65
+
66
+ else:
67
+ raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}")
68
+
69
+ encoder_hidden_states = detached_encoder_state
70
+
71
+
72
+ # optimization
73
+ if mask_spatial_lora:
74
+ loras = extract_lora_child_module(unet, target_replace_module=["Transformer2DModel"])
75
+ for lora_i in loras:
76
+ lora_i.scale = 0.
77
+ loss_spatial = None
78
+ else:
79
+ loras = extract_lora_child_module(unet, target_replace_module=["Transformer2DModel"])
80
+
81
+ if spatial_lora_num == 1:
82
+ for lora_i in loras:
83
+ lora_i.scale = 1.
84
+ else:
85
+ for lora_i in loras:
86
+ lora_i.scale = 0.
87
+
88
+ for lora_idx in range(0, len(loras), spatial_lora_num):
89
+ loras[lora_idx + step].scale = 1.
90
+
91
+ loras = extract_lora_child_module(unet, target_replace_module=["TransformerTemporalModel"])
92
+ if len(loras) > 0:
93
+ for lora_i in loras:
94
+ lora_i.scale = 0.
95
+
96
+ ran_idx = torch.randint(0, noisy_latents.shape[2], (1,)).item()
97
+
98
+ if random.uniform(0, 1) < random_hflip_img:
99
+ pixel_values_spatial = transforms.functional.hflip(
100
+ batch["pixel_values"][:, ran_idx, :, :, :]).unsqueeze(1)
101
+ latents_spatial = tensor_to_vae_latent(pixel_values_spatial, vae)
102
+ noise_spatial = sample_noise(latents_spatial, 0.1, False)
103
+ noisy_latents_input = noise_scheduler.add_noise(latents_spatial, noise_spatial, timesteps)
104
+ target_spatial = noise_spatial
105
+ model_pred_spatial = unet(noisy_latents_input, timesteps,
106
+ encoder_hidden_states=encoder_hidden_states).sample
107
+ loss_spatial = F.mse_loss(model_pred_spatial[:, :, 0, :, :].float(),
108
+ target_spatial[:, :, 0, :, :].float(), reduction="mean")
109
+ else:
110
+ noisy_latents_input = noisy_latents[:, :, ran_idx, :, :]
111
+ target_spatial = target[:, :, ran_idx, :, :]
112
+ model_pred_spatial = unet(noisy_latents_input.unsqueeze(2), timesteps,
113
+ encoder_hidden_states=encoder_hidden_states).sample
114
+ loss_spatial = F.mse_loss(model_pred_spatial[:, :, 0, :, :].float(),
115
+ target_spatial.float(), reduction="mean")
116
+
117
+
118
+ model_pred = unet(noisy_latents, timesteps, encoder_hidden_states=encoder_hidden_states).sample
119
+ loss_temporal = F.mse_loss(model_pred.float(), target.float(), reduction="mean")
120
+
121
+ beta = 1
122
+ alpha = (beta ** 2 + 1) ** 0.5
123
+ ran_idx = torch.randint(0, model_pred.shape[2], (1,)).item()
124
+ model_pred_decent = alpha * model_pred - beta * model_pred[:, :, ran_idx, :, :].unsqueeze(2)
125
+ target_decent = alpha * target - beta * target[:, :, ran_idx, :, :].unsqueeze(2)
126
+ loss_ad_temporal = F.mse_loss(model_pred_decent.float(), target_decent.float(), reduction="mean")
127
+ loss_temporal = loss_temporal + loss_ad_temporal
128
+
129
+ avg_loss_temporal = accelerator.gather(loss_temporal.repeat(config.train.train_batch_size)).mean()
130
+ train_loss_temporal += avg_loss_temporal.item() / config.train.gradient_accumulation_steps
131
+
132
+ if not mask_spatial_lora:
133
+ accelerator.backward(loss_spatial, retain_graph=True)
134
+ if spatial_lora_num == 1:
135
+ optimizers[1].step()
136
+ else:
137
+ optimizers[step+1].step()
138
+
139
+ accelerator.backward(loss_temporal)
140
+ optimizers[0].step()
141
+
142
+ if spatial_lora_num == 1:
143
+ lr_schedulers[1].step()
144
+ else:
145
+ lr_schedulers[1 + step].step()
146
+
147
+ lr_schedulers[0].step()
148
+
149
+ return loss_temporal, train_loss_temporal
loss/debiased_temporal_loss.py ADDED
@@ -0,0 +1,86 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn.functional as F
3
+
4
+ from utils.func_utils import tensor_to_vae_latent, sample_noise
5
+
6
+ def DebiasedTemporalLoss(
7
+ train_loss_temporal,
8
+ accelerator,
9
+ optimizers,
10
+ lr_schedulers,
11
+ unet,
12
+ vae,
13
+ text_encoder,
14
+ noise_scheduler,
15
+ batch,
16
+ step,
17
+ config
18
+ ):
19
+ cache_latents = config.train.cache_latents
20
+
21
+
22
+
23
+ if not cache_latents:
24
+ latents = tensor_to_vae_latent(batch["pixel_values"], vae)
25
+ else:
26
+ latents = batch["latents"]
27
+
28
+ # Sample noise that we'll add to the latents
29
+ # use_offset_noise = use_offset_noise and not rescale_schedule
30
+
31
+ noise = sample_noise(latents, 0.1, False)
32
+ bsz = latents.shape[0]
33
+
34
+ # Sample a random timestep for each video
35
+ timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device)
36
+ timesteps = timesteps.long()
37
+
38
+ # Add noise to the latents according to the noise magnitude at each timestep
39
+ # (this is the forward diffusion process)
40
+ noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)
41
+
42
+ # *Potentially* Fixes gradient checkpointing training.
43
+ # See: https://github.com/prigoyal/pytorch_memonger/blob/master/tutorial/Checkpointing_for_PyTorch_models.ipynb
44
+ # if kwargs.get('eval_train', False):
45
+ # unet.eval()
46
+ # text_encoder.eval()
47
+
48
+ # Encode text embeddings
49
+ token_ids = batch['prompt_ids']
50
+ encoder_hidden_states = text_encoder(token_ids)[0]
51
+ detached_encoder_state = encoder_hidden_states.clone().detach()
52
+
53
+ # Get the target for loss depending on the prediction type
54
+ if noise_scheduler.config.prediction_type == "epsilon":
55
+ target = noise
56
+
57
+ elif noise_scheduler.config.prediction_type == "v_prediction":
58
+ target = noise_scheduler.get_velocity(latents, noise, timesteps)
59
+
60
+ else:
61
+ raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}")
62
+
63
+ encoder_hidden_states = detached_encoder_state
64
+
65
+
66
+ # optimization
67
+ model_pred = unet(noisy_latents, timesteps, encoder_hidden_states=encoder_hidden_states).sample
68
+ loss_temporal = F.mse_loss(model_pred.float(), target.float(), reduction="mean")
69
+
70
+ beta = 1
71
+ alpha = (beta ** 2 + 1) ** 0.5
72
+ ran_idx = torch.randint(0, model_pred.shape[2], (1,)).item()
73
+ model_pred_decent = alpha * model_pred - beta * model_pred[:, :, ran_idx, :, :].unsqueeze(2)
74
+ target_decent = alpha * target - beta * target[:, :, ran_idx, :, :].unsqueeze(2)
75
+ loss_ad_temporal = F.mse_loss(model_pred_decent.float(), target_decent.float(), reduction="mean")
76
+ loss_temporal = loss_temporal + loss_ad_temporal
77
+
78
+ avg_loss_temporal = accelerator.gather(loss_temporal.repeat(config.train.train_batch_size)).mean()
79
+ train_loss_temporal += avg_loss_temporal.item() / config.train.gradient_accumulation_steps
80
+
81
+ accelerator.backward(loss_temporal)
82
+ optimizers[0].step()
83
+
84
+ lr_schedulers[0].step()
85
+
86
+ return loss_temporal, train_loss_temporal
loss/motion_distillation_loss.py ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn.functional as F
3
+ from utils.func_utils import tensor_to_vae_latent, sample_noise
4
+
5
+ def MotionDistillationLoss(
6
+ train_loss_temporal,
7
+ accelerator,
8
+ optimizers,
9
+ lr_schedulers,
10
+ unet,
11
+ vae,
12
+ text_encoder,
13
+ noise_scheduler,
14
+ batch,
15
+ step,
16
+ config
17
+ ):
18
+ cache_latents = config.train.cache_latents
19
+
20
+ if not cache_latents:
21
+ latents = tensor_to_vae_latent(batch["pixel_values"], vae)
22
+ else:
23
+ latents = batch["latents"]
24
+
25
+ # Sample noise that we'll add to the latents
26
+ # use_offset_noise = use_offset_noise and not rescale_schedule
27
+
28
+ noise = sample_noise(latents, 0.1, False)
29
+ bsz = latents.shape[0]
30
+
31
+ # Sample a random timestep for each video
32
+ timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device)
33
+ timesteps = timesteps.long()
34
+
35
+ # Add noise to the latents according to the noise magnitude at each timestep
36
+ # (this is the forward diffusion process)
37
+ noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)
38
+
39
+ # *Potentially* Fixes gradient checkpointing training.
40
+ # See: https://github.com/prigoyal/pytorch_memonger/blob/master/tutorial/Checkpointing_for_PyTorch_models.ipynb
41
+ # if kwargs.get('eval_train', False):
42
+ # unet.eval()
43
+ # text_encoder.eval()
44
+
45
+ # Encode text embeddings
46
+ token_ids = batch['prompt_ids']
47
+ encoder_hidden_states = text_encoder(token_ids)[0]
48
+ detached_encoder_state = encoder_hidden_states.clone().detach()
49
+
50
+ # Get the target for loss depending on the prediction type
51
+ if noise_scheduler.config.prediction_type == "epsilon":
52
+ target = noise
53
+
54
+ elif noise_scheduler.config.prediction_type == "v_prediction":
55
+ target = noise_scheduler.get_velocity(latents, noise, timesteps)
56
+
57
+ else:
58
+ raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}")
59
+
60
+ encoder_hidden_states = detached_encoder_state
61
+
62
+
63
+ # optimization
64
+ model_pred = unet(noisy_latents, timesteps, encoder_hidden_states=encoder_hidden_states).sample
65
+
66
+ loss_temporal = 0
67
+ model_pred_reidual = torch.abs(model_pred[:,:,1:,:,:] - model_pred[:,:,:-1,:,:])
68
+ target_residual = torch.abs(target[:, :, 1:, :, :] - target[:, :, :-1, :, :])
69
+ loss_temporal = loss_temporal + (1 - F.cosine_similarity(model_pred_reidual, target_residual, dim=2).mean)
70
+
71
+ avg_loss_temporal = accelerator.gather(loss_temporal.repeat(config.train.train_batch_size)).mean()
72
+ train_loss_temporal += avg_loss_temporal.item() / config.train.gradient_accumulation_steps
73
+
74
+ accelerator.backward(loss_temporal)
75
+ optimizers[0].step()
76
+ lr_schedulers[0].step()
77
+
78
+ return loss_temporal, train_loss_temporal
79
+
models/dit/latte_t2v.py ADDED
@@ -0,0 +1,990 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+
3
+ import os
4
+ import json
5
+
6
+ from dataclasses import dataclass
7
+ from einops import rearrange, repeat
8
+ from typing import Any, Dict, Optional, Tuple
9
+ from diffusers.models import Transformer2DModel
10
+ from diffusers.utils import USE_PEFT_BACKEND, BaseOutput, deprecate
11
+ from diffusers.models.embeddings import get_1d_sincos_pos_embed_from_grid, ImagePositionalEmbeddings, CaptionProjection, PatchEmbed, CombinedTimestepSizeEmbeddings
12
+ from diffusers.configuration_utils import ConfigMixin, register_to_config
13
+ from diffusers.models.modeling_utils import ModelMixin
14
+ from diffusers.models.attention import BasicTransformerBlock
15
+ from diffusers.models.lora import LoRACompatibleConv, LoRACompatibleLinear
16
+ from diffusers.utils.torch_utils import maybe_allow_in_graph
17
+ from diffusers.models.embeddings import SinusoidalPositionalEmbedding
18
+ from diffusers.models.normalization import AdaLayerNorm, AdaLayerNormZero
19
+ from diffusers.models.attention_processor import Attention
20
+ from diffusers.models.activations import GEGLU, GELU, ApproximateGELU
21
+
22
+ from dataclasses import dataclass
23
+
24
+ import torch
25
+ import torch.nn.functional as F
26
+ from torch import nn
27
+
28
+ @maybe_allow_in_graph
29
+ class GatedSelfAttentionDense(nn.Module):
30
+ r"""
31
+ A gated self-attention dense layer that combines visual features and object features.
32
+
33
+ Parameters:
34
+ query_dim (`int`): The number of channels in the query.
35
+ context_dim (`int`): The number of channels in the context.
36
+ n_heads (`int`): The number of heads to use for attention.
37
+ d_head (`int`): The number of channels in each head.
38
+ """
39
+
40
+ def __init__(self, query_dim: int, context_dim: int, n_heads: int, d_head: int):
41
+ super().__init__()
42
+
43
+ # we need a linear projection since we need cat visual feature and obj feature
44
+ self.linear = nn.Linear(context_dim, query_dim)
45
+
46
+ self.attn = Attention(query_dim=query_dim, heads=n_heads, dim_head=d_head)
47
+ self.ff = FeedForward(query_dim, activation_fn="geglu")
48
+
49
+ self.norm1 = nn.LayerNorm(query_dim)
50
+ self.norm2 = nn.LayerNorm(query_dim)
51
+
52
+ self.register_parameter("alpha_attn", nn.Parameter(torch.tensor(0.0)))
53
+ self.register_parameter("alpha_dense", nn.Parameter(torch.tensor(0.0)))
54
+
55
+ self.enabled = True
56
+
57
+ def forward(self, x: torch.Tensor, objs: torch.Tensor) -> torch.Tensor:
58
+ if not self.enabled:
59
+ return x
60
+
61
+ n_visual = x.shape[1]
62
+ objs = self.linear(objs)
63
+
64
+ x = x + self.alpha_attn.tanh() * self.attn(self.norm1(torch.cat([x, objs], dim=1)))[:, :n_visual, :]
65
+ x = x + self.alpha_dense.tanh() * self.ff(self.norm2(x))
66
+
67
+ return x
68
+
69
+ class FeedForward(nn.Module):
70
+ r"""
71
+ A feed-forward layer.
72
+
73
+ Parameters:
74
+ dim (`int`): The number of channels in the input.
75
+ dim_out (`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`.
76
+ mult (`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension.
77
+ dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
78
+ activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
79
+ final_dropout (`bool` *optional*, defaults to False): Apply a final dropout.
80
+ """
81
+
82
+ def __init__(
83
+ self,
84
+ dim: int,
85
+ dim_out: Optional[int] = None,
86
+ mult: int = 4,
87
+ dropout: float = 0.0,
88
+ activation_fn: str = "geglu",
89
+ final_dropout: bool = False,
90
+ ):
91
+ super().__init__()
92
+ inner_dim = int(dim * mult)
93
+ dim_out = dim_out if dim_out is not None else dim
94
+ linear_cls = LoRACompatibleLinear if not USE_PEFT_BACKEND else nn.Linear
95
+
96
+ if activation_fn == "gelu":
97
+ act_fn = GELU(dim, inner_dim)
98
+ if activation_fn == "gelu-approximate":
99
+ act_fn = GELU(dim, inner_dim, approximate="tanh")
100
+ elif activation_fn == "geglu":
101
+ act_fn = GEGLU(dim, inner_dim)
102
+ elif activation_fn == "geglu-approximate":
103
+ act_fn = ApproximateGELU(dim, inner_dim)
104
+
105
+ self.net = nn.ModuleList([])
106
+ # project in
107
+ self.net.append(act_fn)
108
+ # project dropout
109
+ self.net.append(nn.Dropout(dropout))
110
+ # project out
111
+ self.net.append(linear_cls(inner_dim, dim_out))
112
+ # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout
113
+ if final_dropout:
114
+ self.net.append(nn.Dropout(dropout))
115
+
116
+ def forward(self, hidden_states: torch.Tensor, scale: float = 1.0) -> torch.Tensor:
117
+ compatible_cls = (GEGLU,) if USE_PEFT_BACKEND else (GEGLU, LoRACompatibleLinear)
118
+ for module in self.net:
119
+ if isinstance(module, compatible_cls):
120
+ hidden_states = module(hidden_states, scale)
121
+ else:
122
+ hidden_states = module(hidden_states)
123
+ return hidden_states
124
+
125
+ @maybe_allow_in_graph
126
+ class BasicTransformerBlock_(nn.Module):
127
+ r"""
128
+ A basic Transformer block.
129
+
130
+ Parameters:
131
+ dim (`int`): The number of channels in the input and output.
132
+ num_attention_heads (`int`): The number of heads to use for multi-head attention.
133
+ attention_head_dim (`int`): The number of channels in each head.
134
+ dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
135
+ cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention.
136
+ activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
137
+ num_embeds_ada_norm (:
138
+ obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`.
139
+ attention_bias (:
140
+ obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter.
141
+ only_cross_attention (`bool`, *optional*):
142
+ Whether to use only cross-attention layers. In this case two cross attention layers are used.
143
+ double_self_attention (`bool`, *optional*):
144
+ Whether to use two self-attention layers. In this case no cross attention layers are used.
145
+ upcast_attention (`bool`, *optional*):
146
+ Whether to upcast the attention computation to float32. This is useful for mixed precision training.
147
+ norm_elementwise_affine (`bool`, *optional*, defaults to `True`):
148
+ Whether to use learnable elementwise affine parameters for normalization.
149
+ norm_type (`str`, *optional*, defaults to `"layer_norm"`):
150
+ The normalization layer to use. Can be `"layer_norm"`, `"ada_norm"` or `"ada_norm_zero"`.
151
+ final_dropout (`bool` *optional*, defaults to False):
152
+ Whether to apply a final dropout after the last feed-forward layer.
153
+ attention_type (`str`, *optional*, defaults to `"default"`):
154
+ The type of attention to use. Can be `"default"` or `"gated"` or `"gated-text-image"`.
155
+ positional_embeddings (`str`, *optional*, defaults to `None`):
156
+ The type of positional embeddings to apply to.
157
+ num_positional_embeddings (`int`, *optional*, defaults to `None`):
158
+ The maximum number of positional embeddings to apply.
159
+ """
160
+
161
+ def __init__(
162
+ self,
163
+ dim: int,
164
+ num_attention_heads: int,
165
+ attention_head_dim: int,
166
+ dropout=0.0,
167
+ cross_attention_dim: Optional[int] = None,
168
+ activation_fn: str = "geglu",
169
+ num_embeds_ada_norm: Optional[int] = None,
170
+ attention_bias: bool = False,
171
+ only_cross_attention: bool = False,
172
+ double_self_attention: bool = False,
173
+ upcast_attention: bool = False,
174
+ norm_elementwise_affine: bool = True,
175
+ norm_type: str = "layer_norm", # 'layer_norm', 'ada_norm', 'ada_norm_zero', 'ada_norm_single'
176
+ norm_eps: float = 1e-5,
177
+ final_dropout: bool = False,
178
+ attention_type: str = "default",
179
+ positional_embeddings: Optional[str] = None,
180
+ num_positional_embeddings: Optional[int] = None,
181
+ ):
182
+ super().__init__()
183
+ self.only_cross_attention = only_cross_attention
184
+
185
+ self.use_ada_layer_norm_zero = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero"
186
+ self.use_ada_layer_norm = (num_embeds_ada_norm is not None) and norm_type == "ada_norm"
187
+ self.use_ada_layer_norm_single = norm_type == "ada_norm_single"
188
+ self.use_layer_norm = norm_type == "layer_norm"
189
+
190
+ if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None:
191
+ raise ValueError(
192
+ f"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to"
193
+ f" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}."
194
+ )
195
+
196
+ if positional_embeddings and (num_positional_embeddings is None):
197
+ raise ValueError(
198
+ "If `positional_embedding` type is defined, `num_positition_embeddings` must also be defined."
199
+ )
200
+
201
+ if positional_embeddings == "sinusoidal":
202
+ self.pos_embed = SinusoidalPositionalEmbedding(dim, max_seq_length=num_positional_embeddings)
203
+ else:
204
+ self.pos_embed = None
205
+
206
+ # Define 3 blocks. Each block has its own normalization layer.
207
+ # 1. Self-Attn
208
+ if self.use_ada_layer_norm:
209
+ self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm)
210
+ elif self.use_ada_layer_norm_zero:
211
+ self.norm1 = AdaLayerNormZero(dim, num_embeds_ada_norm)
212
+ else:
213
+ self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps)
214
+
215
+ self.attn1 = Attention(
216
+ query_dim=dim,
217
+ heads=num_attention_heads,
218
+ dim_head=attention_head_dim,
219
+ dropout=dropout,
220
+ bias=attention_bias,
221
+ cross_attention_dim=cross_attention_dim if only_cross_attention else None,
222
+ upcast_attention=upcast_attention,
223
+ )
224
+
225
+ # # 2. Cross-Attn
226
+ # if cross_attention_dim is not None or double_self_attention:
227
+ # # We currently only use AdaLayerNormZero for self attention where there will only be one attention block.
228
+ # # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during
229
+ # # the second cross attention block.
230
+ # self.norm2 = (
231
+ # AdaLayerNorm(dim, num_embeds_ada_norm)
232
+ # if self.use_ada_layer_norm
233
+ # else nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps)
234
+ # )
235
+ # self.attn2 = Attention(
236
+ # query_dim=dim,
237
+ # cross_attention_dim=cross_attention_dim if not double_self_attention else None,
238
+ # heads=num_attention_heads,
239
+ # dim_head=attention_head_dim,
240
+ # dropout=dropout,
241
+ # bias=attention_bias,
242
+ # upcast_attention=upcast_attention,
243
+ # ) # is self-attn if encoder_hidden_states is none
244
+ # else:
245
+ # self.norm2 = None
246
+ # self.attn2 = None
247
+
248
+ # 3. Feed-forward
249
+ # if not self.use_ada_layer_norm_single:
250
+ # self.norm3 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps)
251
+ self.norm3 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps)
252
+
253
+ self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn, final_dropout=final_dropout)
254
+
255
+ # 4. Fuser
256
+ if attention_type == "gated" or attention_type == "gated-text-image":
257
+ self.fuser = GatedSelfAttentionDense(dim, cross_attention_dim, num_attention_heads, attention_head_dim)
258
+
259
+ # 5. Scale-shift for PixArt-Alpha.
260
+ if self.use_ada_layer_norm_single:
261
+ self.scale_shift_table = nn.Parameter(torch.randn(6, dim) / dim**0.5)
262
+
263
+ # let chunk size default to None
264
+ self._chunk_size = None
265
+ self._chunk_dim = 0
266
+
267
+ def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int):
268
+ # Sets chunk feed-forward
269
+ self._chunk_size = chunk_size
270
+ self._chunk_dim = dim
271
+
272
+ def forward(
273
+ self,
274
+ hidden_states: torch.FloatTensor,
275
+ attention_mask: Optional[torch.FloatTensor] = None,
276
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
277
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
278
+ timestep: Optional[torch.LongTensor] = None,
279
+ cross_attention_kwargs: Dict[str, Any] = None,
280
+ class_labels: Optional[torch.LongTensor] = None,
281
+ ) -> torch.FloatTensor:
282
+ # Notice that normalization is always applied before the real computation in the following blocks.
283
+ # 0. Self-Attention
284
+ batch_size = hidden_states.shape[0]
285
+
286
+ if self.use_ada_layer_norm:
287
+ norm_hidden_states = self.norm1(hidden_states, timestep)
288
+ elif self.use_ada_layer_norm_zero:
289
+ norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
290
+ hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype
291
+ )
292
+ elif self.use_layer_norm:
293
+ norm_hidden_states = self.norm1(hidden_states)
294
+ elif self.use_ada_layer_norm_single:
295
+ shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (
296
+ self.scale_shift_table[None] + timestep.reshape(batch_size, 6, -1)
297
+ ).chunk(6, dim=1)
298
+ norm_hidden_states = self.norm1(hidden_states)
299
+ norm_hidden_states = norm_hidden_states * (1 + scale_msa) + shift_msa
300
+ norm_hidden_states = norm_hidden_states.squeeze(1)
301
+ else:
302
+ raise ValueError("Incorrect norm used")
303
+
304
+ if self.pos_embed is not None:
305
+ norm_hidden_states = self.pos_embed(norm_hidden_states)
306
+
307
+ # 1. Retrieve lora scale.
308
+ lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0
309
+
310
+ # 2. Prepare GLIGEN inputs
311
+ cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {}
312
+ gligen_kwargs = cross_attention_kwargs.pop("gligen", None)
313
+
314
+ attn_output = self.attn1(
315
+ norm_hidden_states,
316
+ encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
317
+ attention_mask=attention_mask,
318
+ **cross_attention_kwargs,
319
+ )
320
+ if self.use_ada_layer_norm_zero:
321
+ attn_output = gate_msa.unsqueeze(1) * attn_output
322
+ elif self.use_ada_layer_norm_single:
323
+ attn_output = gate_msa * attn_output
324
+
325
+ hidden_states = attn_output + hidden_states
326
+ if hidden_states.ndim == 4:
327
+ hidden_states = hidden_states.squeeze(1)
328
+
329
+ # 2.5 GLIGEN Control
330
+ if gligen_kwargs is not None:
331
+ hidden_states = self.fuser(hidden_states, gligen_kwargs["objs"])
332
+
333
+ # # 3. Cross-Attention
334
+ # if self.attn2 is not None:
335
+ # if self.use_ada_layer_norm:
336
+ # norm_hidden_states = self.norm2(hidden_states, timestep)
337
+ # elif self.use_ada_layer_norm_zero or self.use_layer_norm:
338
+ # norm_hidden_states = self.norm2(hidden_states)
339
+ # elif self.use_ada_layer_norm_single:
340
+ # # For PixArt norm2 isn't applied here:
341
+ # # https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L70C1-L76C103
342
+ # norm_hidden_states = hidden_states
343
+ # else:
344
+ # raise ValueError("Incorrect norm")
345
+
346
+ # if self.pos_embed is not None and self.use_ada_layer_norm_single is False:
347
+ # norm_hidden_states = self.pos_embed(norm_hidden_states)
348
+
349
+ # attn_output = self.attn2(
350
+ # norm_hidden_states,
351
+ # encoder_hidden_states=encoder_hidden_states,
352
+ # attention_mask=encoder_attention_mask,
353
+ # **cross_attention_kwargs,
354
+ # )
355
+ # hidden_states = attn_output + hidden_states
356
+
357
+ # 4. Feed-forward
358
+ # if not self.use_ada_layer_norm_single:
359
+ # norm_hidden_states = self.norm3(hidden_states)
360
+
361
+ if self.use_ada_layer_norm_zero:
362
+ norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
363
+
364
+ if self.use_ada_layer_norm_single:
365
+ # norm_hidden_states = self.norm2(hidden_states)
366
+ norm_hidden_states = self.norm3(hidden_states)
367
+ norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp
368
+
369
+ if self._chunk_size is not None:
370
+ # "feed_forward_chunk_size" can be used to save memory
371
+ if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0:
372
+ raise ValueError(
373
+ f"`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`."
374
+ )
375
+
376
+ num_chunks = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size
377
+ ff_output = torch.cat(
378
+ [
379
+ self.ff(hid_slice, scale=lora_scale)
380
+ for hid_slice in norm_hidden_states.chunk(num_chunks, dim=self._chunk_dim)
381
+ ],
382
+ dim=self._chunk_dim,
383
+ )
384
+ else:
385
+ ff_output = self.ff(norm_hidden_states, scale=lora_scale)
386
+
387
+ if self.use_ada_layer_norm_zero:
388
+ ff_output = gate_mlp.unsqueeze(1) * ff_output
389
+ elif self.use_ada_layer_norm_single:
390
+ ff_output = gate_mlp * ff_output
391
+
392
+ hidden_states = ff_output + hidden_states
393
+ if hidden_states.ndim == 4:
394
+ hidden_states = hidden_states.squeeze(1)
395
+
396
+ return hidden_states
397
+
398
+ class AdaLayerNormSingle(nn.Module):
399
+ r"""
400
+ Norm layer adaptive layer norm single (adaLN-single).
401
+
402
+ As proposed in PixArt-Alpha (see: https://arxiv.org/abs/2310.00426; Section 2.3).
403
+
404
+ Parameters:
405
+ embedding_dim (`int`): The size of each embedding vector.
406
+ use_additional_conditions (`bool`): To use additional conditions for normalization or not.
407
+ """
408
+
409
+ def __init__(self, embedding_dim: int, use_additional_conditions: bool = False):
410
+ super().__init__()
411
+
412
+ self.emb = CombinedTimestepSizeEmbeddings(
413
+ embedding_dim, size_emb_dim=embedding_dim // 3, use_additional_conditions=use_additional_conditions
414
+ )
415
+
416
+ self.silu = nn.SiLU()
417
+ self.linear = nn.Linear(embedding_dim, 6 * embedding_dim, bias=True)
418
+
419
+ def forward(
420
+ self,
421
+ timestep: torch.Tensor,
422
+ added_cond_kwargs: Dict[str, torch.Tensor] = None,
423
+ batch_size: int = None,
424
+ hidden_dtype: Optional[torch.dtype] = None,
425
+ ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
426
+ # No modulation happening here.
427
+ embedded_timestep = self.emb(timestep, batch_size=batch_size, hidden_dtype=hidden_dtype, resolution=None, aspect_ratio=None)
428
+ return self.linear(self.silu(embedded_timestep)), embedded_timestep
429
+
430
+ @dataclass
431
+ class Transformer3DModelOutput(BaseOutput):
432
+ """
433
+ The output of [`Transformer2DModel`].
434
+
435
+ Args:
436
+ sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` or `(batch size, num_vector_embeds - 1, num_latent_pixels)` if [`Transformer2DModel`] is discrete):
437
+ The hidden states output conditioned on the `encoder_hidden_states` input. If discrete, returns probability
438
+ distributions for the unnoised latent pixels.
439
+ """
440
+
441
+ sample: torch.FloatTensor
442
+
443
+
444
+ class LatteT2V(ModelMixin, ConfigMixin):
445
+ _supports_gradient_checkpointing = True
446
+
447
+ """
448
+ A 2D Transformer model for image-like data.
449
+
450
+ Parameters:
451
+ num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention.
452
+ attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head.
453
+ in_channels (`int`, *optional*):
454
+ The number of channels in the input and output (specify if the input is **continuous**).
455
+ num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use.
456
+ dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
457
+ cross_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use.
458
+ sample_size (`int`, *optional*): The width of the latent images (specify if the input is **discrete**).
459
+ This is fixed during training since it is used to learn a number of position embeddings.
460
+ num_vector_embeds (`int`, *optional*):
461
+ The number of classes of the vector embeddings of the latent pixels (specify if the input is **discrete**).
462
+ Includes the class for the masked latent pixel.
463
+ activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to use in feed-forward.
464
+ num_embeds_ada_norm ( `int`, *optional*):
465
+ The number of diffusion steps used during training. Pass if at least one of the norm_layers is
466
+ `AdaLayerNorm`. This is fixed during training since it is used to learn a number of embeddings that are
467
+ added to the hidden states.
468
+
469
+ During inference, you can denoise for up to but not more steps than `num_embeds_ada_norm`.
470
+ attention_bias (`bool`, *optional*):
471
+ Configure if the `TransformerBlocks` attention should contain a bias parameter.
472
+ """
473
+
474
+ @register_to_config
475
+ def __init__(
476
+ self,
477
+ num_attention_heads: int = 16,
478
+ attention_head_dim: int = 88,
479
+ in_channels: Optional[int] = None,
480
+ out_channels: Optional[int] = None,
481
+ num_layers: int = 1,
482
+ dropout: float = 0.0,
483
+ norm_num_groups: int = 32,
484
+ cross_attention_dim: Optional[int] = None,
485
+ attention_bias: bool = False,
486
+ sample_size: Optional[int] = None,
487
+ num_vector_embeds: Optional[int] = None,
488
+ patch_size: Optional[int] = None,
489
+ activation_fn: str = "geglu",
490
+ num_embeds_ada_norm: Optional[int] = None,
491
+ use_linear_projection: bool = False,
492
+ only_cross_attention: bool = False,
493
+ double_self_attention: bool = False,
494
+ upcast_attention: bool = False,
495
+ norm_type: str = "layer_norm",
496
+ norm_elementwise_affine: bool = True,
497
+ norm_eps: float = 1e-5,
498
+ attention_type: str = "default",
499
+ caption_channels: int = None,
500
+ video_length: int = 16,
501
+ ):
502
+ super().__init__()
503
+ self.use_linear_projection = use_linear_projection
504
+ self.num_attention_heads = num_attention_heads
505
+ self.attention_head_dim = attention_head_dim
506
+ inner_dim = num_attention_heads * attention_head_dim
507
+ self.video_length = video_length
508
+
509
+ conv_cls = nn.Conv2d if USE_PEFT_BACKEND else LoRACompatibleConv
510
+ linear_cls = nn.Linear if USE_PEFT_BACKEND else LoRACompatibleLinear
511
+
512
+ # 1. Transformer2DModel can process both standard continuous images of shape `(batch_size, num_channels, width, height)` as well as quantized image embeddings of shape `(batch_size, num_image_vectors)`
513
+ # Define whether input is continuous or discrete depending on configuration
514
+ self.is_input_continuous = (in_channels is not None) and (patch_size is None)
515
+ self.is_input_vectorized = num_vector_embeds is not None
516
+ self.is_input_patches = in_channels is not None and patch_size is not None
517
+
518
+ if norm_type == "layer_norm" and num_embeds_ada_norm is not None:
519
+ deprecation_message = (
520
+ f"The configuration file of this model: {self.__class__} is outdated. `norm_type` is either not set or"
521
+ " incorrectly set to `'layer_norm'`.Make sure to set `norm_type` to `'ada_norm'` in the config."
522
+ " Please make sure to update the config accordingly as leaving `norm_type` might led to incorrect"
523
+ " results in future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it"
524
+ " would be very nice if you could open a Pull request for the `transformer/config.json` file"
525
+ )
526
+ deprecate("norm_type!=num_embeds_ada_norm", "1.0.0", deprecation_message, standard_warn=False)
527
+ norm_type = "ada_norm"
528
+
529
+ if self.is_input_continuous and self.is_input_vectorized:
530
+ raise ValueError(
531
+ f"Cannot define both `in_channels`: {in_channels} and `num_vector_embeds`: {num_vector_embeds}. Make"
532
+ " sure that either `in_channels` or `num_vector_embeds` is None."
533
+ )
534
+ elif self.is_input_vectorized and self.is_input_patches:
535
+ raise ValueError(
536
+ f"Cannot define both `num_vector_embeds`: {num_vector_embeds} and `patch_size`: {patch_size}. Make"
537
+ " sure that either `num_vector_embeds` or `num_patches` is None."
538
+ )
539
+ elif not self.is_input_continuous and not self.is_input_vectorized and not self.is_input_patches:
540
+ raise ValueError(
541
+ f"Has to define `in_channels`: {in_channels}, `num_vector_embeds`: {num_vector_embeds}, or patch_size:"
542
+ f" {patch_size}. Make sure that `in_channels`, `num_vector_embeds` or `num_patches` is not None."
543
+ )
544
+
545
+ # 2. Define input layers
546
+ if self.is_input_continuous:
547
+ self.in_channels = in_channels
548
+
549
+ self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True)
550
+ if use_linear_projection:
551
+ self.proj_in = linear_cls(in_channels, inner_dim)
552
+ else:
553
+ self.proj_in = conv_cls(in_channels, inner_dim, kernel_size=1, stride=1, padding=0)
554
+ elif self.is_input_vectorized:
555
+ assert sample_size is not None, "Transformer2DModel over discrete input must provide sample_size"
556
+ assert num_vector_embeds is not None, "Transformer2DModel over discrete input must provide num_embed"
557
+
558
+ self.height = sample_size
559
+ self.width = sample_size
560
+ self.num_vector_embeds = num_vector_embeds
561
+ self.num_latent_pixels = self.height * self.width
562
+
563
+ self.latent_image_embedding = ImagePositionalEmbeddings(
564
+ num_embed=num_vector_embeds, embed_dim=inner_dim, height=self.height, width=self.width
565
+ )
566
+ elif self.is_input_patches:
567
+ assert sample_size is not None, "Transformer2DModel over patched input must provide sample_size"
568
+
569
+ self.height = sample_size
570
+ self.width = sample_size
571
+
572
+ self.patch_size = patch_size
573
+ interpolation_scale = self.config.sample_size // 64 # => 64 (= 512 pixart) has interpolation scale 1
574
+ interpolation_scale = max(interpolation_scale, 1)
575
+ self.pos_embed = PatchEmbed(
576
+ height=sample_size,
577
+ width=sample_size,
578
+ patch_size=patch_size,
579
+ in_channels=in_channels,
580
+ embed_dim=inner_dim,
581
+ interpolation_scale=interpolation_scale,
582
+ )
583
+
584
+ # 3. Define transformers blocks
585
+ self.transformer_blocks = nn.ModuleList(
586
+ [
587
+ BasicTransformerBlock(
588
+ inner_dim,
589
+ num_attention_heads,
590
+ attention_head_dim,
591
+ dropout=dropout,
592
+ cross_attention_dim=cross_attention_dim,
593
+ activation_fn=activation_fn,
594
+ num_embeds_ada_norm=num_embeds_ada_norm,
595
+ attention_bias=attention_bias,
596
+ only_cross_attention=only_cross_attention,
597
+ double_self_attention=double_self_attention,
598
+ upcast_attention=upcast_attention,
599
+ norm_type=norm_type,
600
+ norm_elementwise_affine=norm_elementwise_affine,
601
+ norm_eps=norm_eps,
602
+ attention_type=attention_type,
603
+ )
604
+ for d in range(num_layers)
605
+ ]
606
+ )
607
+
608
+ # Define temporal transformers blocks
609
+ self.temporal_transformer_blocks = nn.ModuleList(
610
+ [
611
+ BasicTransformerBlock_( # one attention
612
+ inner_dim,
613
+ num_attention_heads, # num_attention_heads
614
+ attention_head_dim, # attention_head_dim 72
615
+ dropout=dropout,
616
+ cross_attention_dim=None,
617
+ activation_fn=activation_fn,
618
+ num_embeds_ada_norm=num_embeds_ada_norm,
619
+ attention_bias=attention_bias,
620
+ only_cross_attention=only_cross_attention,
621
+ double_self_attention=False,
622
+ upcast_attention=upcast_attention,
623
+ norm_type=norm_type,
624
+ norm_elementwise_affine=norm_elementwise_affine,
625
+ norm_eps=norm_eps,
626
+ attention_type=attention_type,
627
+ )
628
+ for d in range(num_layers)
629
+ ]
630
+ )
631
+
632
+
633
+ # 4. Define output layers
634
+ self.out_channels = in_channels if out_channels is None else out_channels
635
+ if self.is_input_continuous:
636
+ # TODO: should use out_channels for continuous projections
637
+ if use_linear_projection:
638
+ self.proj_out = linear_cls(inner_dim, in_channels)
639
+ else:
640
+ self.proj_out = conv_cls(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)
641
+ elif self.is_input_vectorized:
642
+ self.norm_out = nn.LayerNorm(inner_dim)
643
+ self.out = nn.Linear(inner_dim, self.num_vector_embeds - 1)
644
+ elif self.is_input_patches and norm_type != "ada_norm_single":
645
+ self.norm_out = nn.LayerNorm(inner_dim, elementwise_affine=False, eps=1e-6)
646
+ self.proj_out_1 = nn.Linear(inner_dim, 2 * inner_dim)
647
+ self.proj_out_2 = nn.Linear(inner_dim, patch_size * patch_size * self.out_channels)
648
+ elif self.is_input_patches and norm_type == "ada_norm_single":
649
+ self.norm_out = nn.LayerNorm(inner_dim, elementwise_affine=False, eps=1e-6)
650
+ self.scale_shift_table = nn.Parameter(torch.randn(2, inner_dim) / inner_dim**0.5)
651
+ self.proj_out = nn.Linear(inner_dim, patch_size * patch_size * self.out_channels)
652
+
653
+ # 5. PixArt-Alpha blocks.
654
+ self.adaln_single = None
655
+ self.use_additional_conditions = False
656
+ if norm_type == "ada_norm_single":
657
+ self.use_additional_conditions = self.config.sample_size == 128 # False, 128 -> 1024
658
+ # TODO(Sayak, PVP) clean this, for now we use sample size to determine whether to use
659
+ # additional conditions until we find better name
660
+ self.adaln_single = AdaLayerNormSingle(inner_dim, use_additional_conditions=self.use_additional_conditions)
661
+
662
+ self.caption_projection = None
663
+ if caption_channels is not None:
664
+ self.caption_projection = CaptionProjection(in_features=caption_channels, hidden_size=inner_dim)
665
+
666
+ self.gradient_checkpointing = False
667
+
668
+ # define temporal positional embedding
669
+ temp_pos_embed = self.get_1d_sincos_temp_embed(inner_dim, video_length) # 1152 hidden size
670
+ self.register_buffer("temp_pos_embed", torch.from_numpy(temp_pos_embed).float().unsqueeze(0), persistent=False)
671
+
672
+
673
+ def _set_gradient_checkpointing(self, module, value=False):
674
+ self.gradient_checkpointing = value
675
+
676
+
677
+ def forward(
678
+ self,
679
+ hidden_states: torch.Tensor,
680
+ timestep: Optional[torch.LongTensor] = None,
681
+ encoder_hidden_states: Optional[torch.Tensor] = None,
682
+ added_cond_kwargs: Dict[str, torch.Tensor] = None,
683
+ class_labels: Optional[torch.LongTensor] = None,
684
+ cross_attention_kwargs: Dict[str, Any] = None,
685
+ attention_mask: Optional[torch.Tensor] = None,
686
+ encoder_attention_mask: Optional[torch.Tensor] = None,
687
+ use_image_num: int = 0,
688
+ enable_temporal_attentions: bool = True,
689
+ return_dict: bool = True,
690
+ ):
691
+ """
692
+ The [`Transformer2DModel`] forward method.
693
+
694
+ Args:
695
+ hidden_states (`torch.LongTensor` of shape `(batch size, num latent pixels)` if discrete, `torch.FloatTensor` of shape `(batch size, frame, channel, height, width)` if continuous):
696
+ Input `hidden_states`.
697
+ encoder_hidden_states ( `torch.FloatTensor` of shape `(batch size, sequence len, embed dims)`, *optional*):
698
+ Conditional embeddings for cross attention layer. If not given, cross-attention defaults to
699
+ self-attention.
700
+ timestep ( `torch.LongTensor`, *optional*):
701
+ Used to indicate denoising step. Optional timestep to be applied as an embedding in `AdaLayerNorm`.
702
+ class_labels ( `torch.LongTensor` of shape `(batch size, num classes)`, *optional*):
703
+ Used to indicate class labels conditioning. Optional class labels to be applied as an embedding in
704
+ `AdaLayerZeroNorm`.
705
+ cross_attention_kwargs ( `Dict[str, Any]`, *optional*):
706
+ A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
707
+ `self.processor` in
708
+ [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
709
+ attention_mask ( `torch.Tensor`, *optional*):
710
+ An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
711
+ is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
712
+ negative values to the attention scores corresponding to "discard" tokens.
713
+ encoder_attention_mask ( `torch.Tensor`, *optional*):
714
+ Cross-attention mask applied to `encoder_hidden_states`. Two formats supported:
715
+
716
+ * Mask `(batch, sequence_length)` True = keep, False = discard.
717
+ * Bias `(batch, 1, sequence_length)` 0 = keep, -10000 = discard.
718
+
719
+ If `ndim == 2`: will be interpreted as a mask, then converted into a bias consistent with the format
720
+ above. This bias will be added to the cross-attention scores.
721
+ return_dict (`bool`, *optional*, defaults to `True`):
722
+ Whether or not to return a [`~models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
723
+ tuple.
724
+
725
+ Returns:
726
+ If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
727
+ `tuple` where the first element is the sample tensor.
728
+ """
729
+ input_batch_size, c, frame, h, w = hidden_states.shape
730
+ frame = frame - use_image_num
731
+ hidden_states = rearrange(hidden_states, 'b c f h w -> (b f) c h w').contiguous()
732
+
733
+ # ensure attention_mask is a bias, and give it a singleton query_tokens dimension.
734
+ # we may have done this conversion already, e.g. if we came here via UNet2DConditionModel#forward.
735
+ # we can tell by counting dims; if ndim == 2: it's a mask rather than a bias.
736
+ # expects mask of shape:
737
+ # [batch, key_tokens]
738
+ # adds singleton query_tokens dimension:
739
+ # [batch, 1, key_tokens]
740
+ # this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
741
+ # [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn)
742
+ # [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
743
+ if attention_mask is not None and attention_mask.ndim == 2:
744
+ # assume that mask is expressed as:
745
+ # (1 = keep, 0 = discard)
746
+ # convert mask into a bias that can be added to attention scores:
747
+ # (keep = +0, discard = -10000.0)
748
+ attention_mask = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0
749
+ attention_mask = attention_mask.unsqueeze(1)
750
+
751
+ # convert encoder_attention_mask to a bias the same way we do for attention_mask
752
+ if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2: # ndim == 2 means no image joint
753
+ encoder_attention_mask = (1 - encoder_attention_mask.to(hidden_states.dtype)) * -10000.0
754
+ encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
755
+ encoder_attention_mask = repeat(encoder_attention_mask, 'b 1 l -> (b f) 1 l', f=frame).contiguous()
756
+ elif encoder_attention_mask is not None and encoder_attention_mask.ndim == 3: # ndim == 3 means image joint
757
+ encoder_attention_mask = (1 - encoder_attention_mask.to(hidden_states.dtype)) * -10000.0
758
+ encoder_attention_mask_video = encoder_attention_mask[:, :1, ...]
759
+ encoder_attention_mask_video = repeat(encoder_attention_mask_video, 'b 1 l -> b (1 f) l', f=frame).contiguous()
760
+ encoder_attention_mask_image = encoder_attention_mask[:, 1:, ...]
761
+ encoder_attention_mask = torch.cat([encoder_attention_mask_video, encoder_attention_mask_image], dim=1)
762
+ encoder_attention_mask = rearrange(encoder_attention_mask, 'b n l -> (b n) l').contiguous().unsqueeze(1)
763
+
764
+
765
+ # Retrieve lora scale.
766
+ lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0
767
+
768
+ # 1. Input
769
+ if self.is_input_patches: # here
770
+ height, width = hidden_states.shape[-2] // self.patch_size, hidden_states.shape[-1] // self.patch_size
771
+ num_patches = height * width
772
+
773
+ hidden_states = self.pos_embed(hidden_states) # alrady add positional embeddings
774
+
775
+ if self.adaln_single is not None:
776
+ if self.use_additional_conditions and added_cond_kwargs is None:
777
+ raise ValueError(
778
+ "`added_cond_kwargs` cannot be None when using additional conditions for `adaln_single`."
779
+ )
780
+ # batch_size = hidden_states.shape[0]
781
+ batch_size = input_batch_size
782
+ timestep, embedded_timestep = self.adaln_single(
783
+ timestep, added_cond_kwargs, batch_size=batch_size, hidden_dtype=hidden_states.dtype
784
+ )
785
+
786
+ # 2. Blocks
787
+ if self.caption_projection is not None:
788
+ batch_size = hidden_states.shape[0]
789
+ encoder_hidden_states = self.caption_projection(encoder_hidden_states) # 3 120 1152
790
+
791
+ if use_image_num != 0 and self.training:
792
+ encoder_hidden_states_video = encoder_hidden_states[:, :1, ...]
793
+ encoder_hidden_states_video = repeat(encoder_hidden_states_video, 'b 1 t d -> b (1 f) t d', f=frame).contiguous()
794
+ encoder_hidden_states_image = encoder_hidden_states[:, 1:, ...]
795
+ encoder_hidden_states = torch.cat([encoder_hidden_states_video, encoder_hidden_states_image], dim=1)
796
+ encoder_hidden_states_spatial = rearrange(encoder_hidden_states, 'b f t d -> (b f) t d').contiguous()
797
+ else:
798
+ encoder_hidden_states_spatial = repeat(encoder_hidden_states, 'b t d -> (b f) t d', f=frame).contiguous()
799
+
800
+ # prepare timesteps for spatial and temporal block
801
+ timestep_spatial = repeat(timestep, 'b d -> (b f) d', f=frame + use_image_num).contiguous()
802
+ timestep_temp = repeat(timestep, 'b d -> (b p) d', p=num_patches).contiguous()
803
+
804
+ for i, (spatial_block, temp_block) in enumerate(zip(self.transformer_blocks, self.temporal_transformer_blocks)):
805
+
806
+ if self.training and self.gradient_checkpointing:
807
+ hidden_states = torch.utils.checkpoint.checkpoint(
808
+ spatial_block,
809
+ hidden_states,
810
+ attention_mask,
811
+ encoder_hidden_states_spatial,
812
+ encoder_attention_mask,
813
+ timestep_spatial,
814
+ cross_attention_kwargs,
815
+ class_labels,
816
+ use_reentrant=False,
817
+ )
818
+
819
+ if enable_temporal_attentions:
820
+ hidden_states = rearrange(hidden_states, '(b f) t d -> (b t) f d', b=input_batch_size).contiguous()
821
+
822
+ if use_image_num != 0: # image-video joitn training
823
+ hidden_states_video = hidden_states[:, :frame, ...]
824
+ hidden_states_image = hidden_states[:, frame:, ...]
825
+
826
+ if i == 0:
827
+ hidden_states_video = hidden_states_video + self.temp_pos_embed
828
+
829
+ hidden_states_video = torch.utils.checkpoint.checkpoint(
830
+ temp_block,
831
+ hidden_states_video,
832
+ None, # attention_mask
833
+ None, # encoder_hidden_states
834
+ None, # encoder_attention_mask
835
+ timestep_temp,
836
+ cross_attention_kwargs,
837
+ class_labels,
838
+ use_reentrant=False,
839
+ )
840
+
841
+ hidden_states = torch.cat([hidden_states_video, hidden_states_image], dim=1)
842
+ hidden_states = rearrange(hidden_states, '(b t) f d -> (b f) t d', b=input_batch_size).contiguous()
843
+
844
+ else:
845
+ if i == 0:
846
+ hidden_states = hidden_states + self.temp_pos_embed
847
+
848
+ hidden_states = torch.utils.checkpoint.checkpoint(
849
+ temp_block,
850
+ hidden_states,
851
+ None, # attention_mask
852
+ None, # encoder_hidden_states
853
+ None, # encoder_attention_mask
854
+ timestep_temp,
855
+ cross_attention_kwargs,
856
+ class_labels,
857
+ use_reentrant=False,
858
+ )
859
+
860
+ hidden_states = rearrange(hidden_states, '(b t) f d -> (b f) t d', b=input_batch_size).contiguous()
861
+ else:
862
+ hidden_states = spatial_block(
863
+ hidden_states,
864
+ attention_mask,
865
+ encoder_hidden_states_spatial,
866
+ encoder_attention_mask,
867
+ timestep_spatial,
868
+ cross_attention_kwargs,
869
+ class_labels,
870
+ )
871
+
872
+ if enable_temporal_attentions:
873
+
874
+ hidden_states = rearrange(hidden_states, '(b f) t d -> (b t) f d', b=input_batch_size).contiguous()
875
+
876
+ if use_image_num != 0 and self.training:
877
+ hidden_states_video = hidden_states[:, :frame, ...]
878
+ hidden_states_image = hidden_states[:, frame:, ...]
879
+
880
+ hidden_states_video = temp_block(
881
+ hidden_states_video,
882
+ None, # attention_mask
883
+ None, # encoder_hidden_states
884
+ None, # encoder_attention_mask
885
+ timestep_temp,
886
+ cross_attention_kwargs,
887
+ class_labels,
888
+ )
889
+
890
+ hidden_states = torch.cat([hidden_states_video, hidden_states_image], dim=1)
891
+ hidden_states = rearrange(hidden_states, '(b t) f d -> (b f) t d', b=input_batch_size).contiguous()
892
+
893
+ else:
894
+ if i == 0:
895
+ hidden_states = hidden_states + self.temp_pos_embed
896
+
897
+ hidden_states = temp_block(
898
+ hidden_states,
899
+ None, # attention_mask
900
+ None, # encoder_hidden_states
901
+ None, # encoder_attention_mask
902
+ timestep_temp,
903
+ cross_attention_kwargs,
904
+ class_labels,
905
+ )
906
+
907
+ hidden_states = rearrange(hidden_states, '(b t) f d -> (b f) t d', b=input_batch_size).contiguous()
908
+
909
+
910
+ if self.is_input_patches:
911
+ if self.config.norm_type != "ada_norm_single":
912
+ conditioning = self.transformer_blocks[0].norm1.emb(
913
+ timestep, class_labels, hidden_dtype=hidden_states.dtype
914
+ )
915
+ shift, scale = self.proj_out_1(F.silu(conditioning)).chunk(2, dim=1)
916
+ hidden_states = self.norm_out(hidden_states) * (1 + scale[:, None]) + shift[:, None]
917
+ hidden_states = self.proj_out_2(hidden_states)
918
+ elif self.config.norm_type == "ada_norm_single":
919
+ embedded_timestep = repeat(embedded_timestep, 'b d -> (b f) d', f=frame + use_image_num).contiguous()
920
+ shift, scale = (self.scale_shift_table[None] + embedded_timestep[:, None]).chunk(2, dim=1)
921
+ hidden_states = self.norm_out(hidden_states)
922
+ # Modulation
923
+ hidden_states = hidden_states * (1 + scale) + shift
924
+ hidden_states = self.proj_out(hidden_states)
925
+
926
+ # unpatchify
927
+ if self.adaln_single is None:
928
+ height = width = int(hidden_states.shape[1] ** 0.5)
929
+ hidden_states = hidden_states.reshape(
930
+ shape=(-1, height, width, self.patch_size, self.patch_size, self.out_channels)
931
+ )
932
+ hidden_states = torch.einsum("nhwpqc->nchpwq", hidden_states)
933
+ output = hidden_states.reshape(
934
+ shape=(-1, self.out_channels, height * self.patch_size, width * self.patch_size)
935
+ )
936
+ output = rearrange(output, '(b f) c h w -> b c f h w', b=input_batch_size).contiguous()
937
+
938
+ if not return_dict:
939
+ return (output,)
940
+
941
+ return Transformer3DModelOutput(sample=output)
942
+
943
+ def get_1d_sincos_temp_embed(self, embed_dim, length):
944
+ pos = torch.arange(0, length).unsqueeze(1)
945
+ return get_1d_sincos_pos_embed_from_grid(embed_dim, pos)
946
+
947
+ @classmethod
948
+ def from_pretrained_2d(cls, pretrained_model_path, subfolder=None, **kwargs):
949
+ if subfolder is not None:
950
+ pretrained_model_path = os.path.join(pretrained_model_path, subfolder)
951
+
952
+
953
+ config_file = os.path.join(pretrained_model_path, 'config.json')
954
+ if not os.path.isfile(config_file):
955
+ raise RuntimeError(f"{config_file} does not exist")
956
+ with open(config_file, "r") as f:
957
+ config = json.load(f)
958
+
959
+ model = cls.from_config(config, **kwargs)
960
+
961
+ # model_files = [
962
+ # os.path.join(pretrained_model_path, 'diffusion_pytorch_model.bin'),
963
+ # os.path.join(pretrained_model_path, 'diffusion_pytorch_model.safetensors')
964
+ # ]
965
+
966
+ # model_file = None
967
+
968
+ # for fp in model_files:
969
+ # if os.path.exists(fp):
970
+ # model_file = fp
971
+
972
+ # if not model_file:
973
+ # raise RuntimeError(f"{model_file} does not exist")
974
+
975
+ # if model_file.split(".")[-1] == "safetensors":
976
+ # from safetensors import safe_open
977
+ # state_dict = {}
978
+ # with safe_open(model_file, framework="pt", device="cpu") as f:
979
+ # for key in f.keys():
980
+ # state_dict[key] = f.get_tensor(key)
981
+ # else:
982
+ # state_dict = torch.load(model_file, map_location="cpu")
983
+
984
+ # for k, v in model.state_dict().items():
985
+ # if 'temporal_transformer_blocks' in k:
986
+ # state_dict.update({k: v})
987
+
988
+ # model.load_state_dict(state_dict)
989
+
990
+ return model
models/unet/__pycache__/motion_embeddings.cpython-310.pyc ADDED
Binary file (7.4 kB). View file
 
models/unet/__pycache__/unet_3d_blocks.cpython-310.pyc ADDED
Binary file (12.9 kB). View file
 
models/unet/__pycache__/unet_3d_condition.cpython-310.pyc ADDED
Binary file (13.9 kB). View file
 
models/unet/motion_embeddings.py ADDED
@@ -0,0 +1,283 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import re
2
+ import torch
3
+ import torch.nn as nn
4
+ import torch.nn.functional as F
5
+ import numpy as np
6
+ class MotionEmbedding(nn.Module):
7
+
8
+ def __init__(self, embed_dim: int = None, max_seq_length: int = 32, wh: int = 1):
9
+ super().__init__()
10
+ self.embed = nn.Parameter(torch.zeros(wh, max_seq_length, embed_dim))
11
+ print('register spatial motion embedding with', wh)
12
+
13
+ self.scale = 1.0
14
+ self.trained_length = -1
15
+
16
+ def set_scale(self, scale: float):
17
+ self.scale = scale
18
+
19
+ def set_lengths(self, trained_length: int):
20
+ if trained_length > self.embed.shape[1] or trained_length <= 0:
21
+ raise ValueError("Trained length is out of bounds")
22
+ self.trained_length = trained_length
23
+
24
+ def forward(self, x):
25
+ _, seq_length, _ = x.shape # seq_length here is the target sequence length for x
26
+ # print('seq_length',seq_length)
27
+ # Assuming self.embed is [batch, frames, dim]
28
+ embeddings = self.embed[:, :seq_length] # Initial slice, may not be necessary depending on the interpolation logic
29
+
30
+ # Check if interpolation is needed
31
+ if self.trained_length != -1 and seq_length != self.trained_length:
32
+ # Interpolate embeddings to match x's sequence length
33
+ # Ensure embeddings is [batch, dim, frames] for 1D interpolation across frames
34
+ embeddings = embeddings.permute(0, 2, 1) # Now [batch, dim, frames]
35
+ embeddings = F.interpolate(embeddings, size=(seq_length,), mode='linear', align_corners=False)
36
+ embeddings = embeddings.permute(0, 2, 1) # Revert to [batch, frames, dim]
37
+
38
+ # Ensure the interpolated embeddings match the sequence length of x
39
+ if embeddings.shape[1] != seq_length:
40
+ raise ValueError(f"Interpolated embeddings sequence length {embeddings.shape[1]} does not match x's sequence length {seq_length}")
41
+
42
+ if x.shape[0] != embeddings.shape[0]:
43
+ x = x + embeddings.repeat(x.shape[0]//embeddings.shape[0],1,1) * self.scale
44
+ else:
45
+ # Now embeddings should have the shape [batch, seq_length, dim] matching x
46
+ x = x + embeddings * self.scale # Assuming broadcasting is desired over the batch and dim dimensions
47
+
48
+ return x
49
+
50
+
51
+ def forward_average(self, x):
52
+ _, seq_length, _ = x.shape # seq_length here is the target sequence length for x
53
+ # print('seq_length',seq_length)
54
+ # Assuming self.embed is [batch, frames, dim]
55
+ embeddings = self.embed[:, :seq_length] # Initial slice, may not be necessary depending on the interpolation logic
56
+
57
+ # Check if interpolation is needed
58
+ if self.trained_length != -1 and seq_length != self.trained_length:
59
+ # Interpolate embeddings to match x's sequence length
60
+ # Ensure embeddings is [batch, dim, frames] for 1D interpolation across frames
61
+ embeddings = embeddings.permute(0, 2, 1) # Now [batch, dim, frames]
62
+ embeddings = F.interpolate(embeddings, size=(seq_length,), mode='linear', align_corners=False)
63
+ embeddings = embeddings.permute(0, 2, 1) # Revert to [batch, frames, dim]
64
+
65
+ # Ensure the interpolated embeddings match the sequence length of x
66
+ if embeddings.shape[1] != seq_length:
67
+ raise ValueError(f"Interpolated embeddings sequence length {embeddings.shape[1]} does not match x's sequence length {seq_length}")
68
+
69
+ embeddings_mean = embeddings.mean(dim=1, keepdim=True)
70
+ embeddings = embeddings - embeddings_mean
71
+ if x.shape[0] != embeddings.shape[0]:
72
+ x = x + embeddings.repeat(x.shape[0]//embeddings.shape[0],1,1) * self.scale
73
+ else:
74
+ # Now embeddings should have the shape [batch, seq_length, dim] matching x
75
+ x = x + embeddings * self.scale # Assuming broadcasting is desired over the batch and dim dimensions
76
+
77
+ return x
78
+
79
+ def forward_frameSubtraction(self, x):
80
+ _, seq_length, _ = x.shape # seq_length here is the target sequence length for x
81
+ # print('seq_length',seq_length)
82
+ # Assuming self.embed is [batch, frames, dim]
83
+ embeddings = self.embed[:, :seq_length] # Initial slice, may not be necessary depending on the interpolation logic
84
+
85
+ # Check if interpolation is needed
86
+ if self.trained_length != -1 and seq_length != self.trained_length:
87
+ # Interpolate embeddings to match x's sequence length
88
+ # Ensure embeddings is [batch, dim, frames] for 1D interpolation across frames
89
+ embeddings = embeddings.permute(0, 2, 1) # Now [batch, dim, frames]
90
+ embeddings = F.interpolate(embeddings, size=(seq_length,), mode='linear', align_corners=False)
91
+ embeddings = embeddings.permute(0, 2, 1) # Revert to [batch, frames, dim]
92
+
93
+ # Ensure the interpolated embeddings match the sequence length of x
94
+ if embeddings.shape[1] != seq_length:
95
+ raise ValueError(f"Interpolated embeddings sequence length {embeddings.shape[1]} does not match x's sequence length {seq_length}")
96
+
97
+ embeddings_subtraction = embeddings[:,1:] - embeddings[:,:-1]
98
+
99
+ embeddings = embeddings.clone().detach()
100
+ embeddings[:,1:] = embeddings_subtraction
101
+
102
+ # first frame minus mean
103
+ # embeddings[:,0:1] = embeddings[:,0:1] - embeddings.mean(dim=1, keepdim=True)
104
+
105
+ if x.shape[0] != embeddings.shape[0]:
106
+ x = x + embeddings.repeat(x.shape[0]//embeddings.shape[0],1,1) * self.scale
107
+ else:
108
+ # Now embeddings should have the shape [batch, seq_length, dim] matching x
109
+ x = x + embeddings * self.scale # Assuming broadcasting is desired over the batch and dim dimensions
110
+
111
+ return x
112
+
113
+ class MotionEmbeddingSpatial(nn.Module):
114
+
115
+ def __init__(self, h: int = None, w: int = None, embed_dim: int = None, max_seq_length: int = 32):
116
+ super().__init__()
117
+ self.embed = nn.Parameter(torch.zeros(h*w, max_seq_length, embed_dim))
118
+ self.scale = 1.0
119
+ self.trained_length = -1
120
+
121
+ def set_scale(self, scale: float):
122
+ self.scale = scale
123
+
124
+ def set_lengths(self, trained_length: int):
125
+ if trained_length > self.embed.shape[1] or trained_length <= 0:
126
+ raise ValueError("Trained length is out of bounds")
127
+ self.trained_length = trained_length
128
+
129
+ def forward(self, x):
130
+ _, seq_length, _ = x.shape # seq_length here is the target sequence length for x
131
+
132
+ # Assuming self.embed is [batch, frames, dim]
133
+ embeddings = self.embed[:, :seq_length] # Initial slice, may not be necessary depending on the interpolation logic
134
+
135
+ # Check if interpolation is needed
136
+ if self.trained_length != -1 and seq_length != self.trained_length:
137
+ # Interpolate embeddings to match x's sequence length
138
+ # Ensure embeddings is [batch, dim, frames] for 1D interpolation across frames
139
+ embeddings = embeddings.permute(0, 2, 1) # Now [batch, dim, frames]
140
+ embeddings = F.interpolate(embeddings, size=(seq_length,), mode='linear', align_corners=False)
141
+ embeddings = embeddings.permute(0, 2, 1) # Revert to [batch, frames, dim]
142
+
143
+ # Ensure the interpolated embeddings match the sequence length of x
144
+ if embeddings.shape[1] != seq_length:
145
+ raise ValueError(f"Interpolated embeddings sequence length {embeddings.shape[1]} does not match x's sequence length {seq_length}")
146
+
147
+ if x.shape[0] != embeddings.shape[0]:
148
+ x = x + embeddings.repeat(x.shape[0]//embeddings.shape[0],1,1) * self.scale
149
+ else:
150
+ # Now embeddings should have the shape [batch, seq_length, dim] matching x
151
+ x = x + embeddings * self.scale # Assuming broadcasting is desired over the batch and dim dimensions
152
+
153
+ return x
154
+
155
+
156
+ def inject_motion_embeddings(model, combinations=None, config=None):
157
+ spatial_shape=np.array([config.dataset.height,config.dataset.width])
158
+ shape32 = np.ceil(spatial_shape/32).astype(int)
159
+ shape16 = np.ceil(spatial_shape/16).astype(int)
160
+ spatial_name = 'vSpatial'
161
+ replacement_dict = {}
162
+ # support for 32 frames
163
+ max_seq_length = 32
164
+ inject_layers = []
165
+ for name, module in model.named_modules():
166
+
167
+ # check if the module is temp_attention
168
+ PETemporal = '.temp_attentions.' in name
169
+
170
+ if not(PETemporal and re.search(r'transformer_blocks\.\d+$', name)):
171
+ continue
172
+
173
+ if not ([name.split('_')[0], module.norm1.normalized_shape[0]] in combinations):
174
+ continue
175
+
176
+ replacement_dict[f'{name}.pos_embed'] = MotionEmbedding(max_seq_length=max_seq_length, embed_dim=module.norm1.normalized_shape[0]).to(dtype=model.dtype, device=model.device)
177
+
178
+ replacement_keys = list(set(replacement_dict.keys()))
179
+ temp_attn_list = [name.replace('pos_embed','attn1') for name in replacement_keys] + \
180
+ [name.replace('pos_embed','attn2') for name in replacement_keys]
181
+ embed_dims = [replacement_dict[replacement_keys[i]].embed.shape[2] for i in range(len(replacement_keys))]
182
+
183
+ for temp_attn_index,temp_attn in enumerate(temp_attn_list):
184
+ place_in_net = temp_attn.split('_')[0]
185
+ pattern = r'(\d+)\.temp_attentions'
186
+ match = re.search(pattern, temp_attn)
187
+ place_in_net = temp_attn.split('_')[0]
188
+ index_in_net = match.group(1)
189
+ h,w = None,None
190
+ if place_in_net == 'up':
191
+ if index_in_net == "1":
192
+ h, w = shape32
193
+ elif index_in_net == "2":
194
+ h, w = shape16
195
+ elif place_in_net == 'down':
196
+ if index_in_net == "1":
197
+ h, w = shape16
198
+ elif index_in_net == "2":
199
+ h, w = shape32
200
+
201
+ replacement_dict[temp_attn+'.'+spatial_name] = \
202
+ MotionEmbedding(
203
+ wh=h*w,
204
+ embed_dim=embed_dims[temp_attn_index%len(replacement_keys)]
205
+ ).to(dtype=model.dtype, device=model.device)
206
+
207
+ for name, new_module in replacement_dict.items():
208
+ parent_name = name.rsplit('.', 1)[0] if '.' in name else ''
209
+ module_name = name.rsplit('.', 1)[-1]
210
+ parent_module = model
211
+ if parent_name:
212
+ parent_module = dict(model.named_modules())[parent_name]
213
+
214
+ if [parent_name.split('_')[0], new_module.embed.shape[-1]] in combinations:
215
+ inject_layers.append(name)
216
+ setattr(parent_module, module_name, new_module)
217
+
218
+ inject_layers = list(set(inject_layers))
219
+ for name in inject_layers:
220
+ print(f"Injecting motion embedding at {name}")
221
+
222
+ parameters_list = []
223
+ for name, para in model.named_parameters():
224
+ if 'pos_embed' in name or spatial_name in name:
225
+ parameters_list.append(para)
226
+ para.requires_grad = True
227
+ else:
228
+ para.requires_grad = False
229
+
230
+ return parameters_list, inject_layers
231
+
232
+ def save_motion_embeddings(model, file_path):
233
+ # Extract motion embedding from all instances of MotionEmbedding
234
+ motion_embeddings = {
235
+ name: module.embed
236
+ for name, module in model.named_modules()
237
+ if isinstance(module, MotionEmbedding) or isinstance(module, MotionEmbeddingSpatial)
238
+ }
239
+ # Save the motion embeddings to the specified file path
240
+ torch.save(motion_embeddings, file_path)
241
+
242
+ def load_motion_embeddings(model, saved_embeddings):
243
+ for key, embedding in saved_embeddings.items():
244
+ # Extract parent module and module name from the key
245
+ parent_name = key.rsplit('.', 1)[0] if '.' in key else ''
246
+ module_name = key.rsplit('.', 1)[-1]
247
+
248
+ # Retrieve the parent module
249
+ parent_module = model
250
+ if parent_name:
251
+ parent_module = dict(model.named_modules())[parent_name]
252
+
253
+ # Create a new MotionEmbedding instance with the correct dimensions
254
+
255
+ new_module = MotionEmbedding(wh = embedding.shape[0],embed_dim=embedding.shape[-1], max_seq_length=embedding.shape[-2])
256
+
257
+ # Properly assign the loaded embeddings to the 'embed' parameter wrapped in nn.Parameter
258
+ # Ensure the embedding is on the correct device and has the correct dtype
259
+ new_module.embed = nn.Parameter(embedding.to(dtype=model.dtype, device=model.device))
260
+
261
+ # Replace the corresponding module in the model with the new MotionEmbedding instance
262
+ setattr(parent_module, module_name, new_module)
263
+
264
+ def set_motion_embedding_scale(model, scale_value):
265
+ # Iterate over all modules in the model
266
+ for _, module in model.named_modules():
267
+ # Check if the module is an instance of MotionEmbedding
268
+ if isinstance(module, MotionEmbedding):
269
+ # Set the scale attribute to the specified value
270
+ module.scale = scale_value
271
+
272
+ def set_motion_embedding_length(model, trained_length):
273
+ # Iterate over all modules in the model
274
+ for _, module in model.named_modules():
275
+ # Check if the module is an instance of MotionEmbedding
276
+ if isinstance(module, MotionEmbedding):
277
+ # Set the length to the specified value
278
+ module.trained_length = trained_length
279
+
280
+
281
+
282
+
283
+
models/unet/unet_3d_blocks.py ADDED
@@ -0,0 +1,842 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2023 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import torch
16
+ import torch.utils.checkpoint as checkpoint
17
+ from torch import nn
18
+ from diffusers.models.resnet import Downsample2D, ResnetBlock2D, TemporalConvLayer, Upsample2D
19
+ from diffusers.models.transformer_2d import Transformer2DModel
20
+ from diffusers.models.transformer_temporal import TransformerTemporalModel
21
+
22
+ # Assign gradient checkpoint function to simple variable for readability.
23
+ g_c = checkpoint.checkpoint
24
+
25
+ def use_temporal(module, num_frames, x):
26
+ if num_frames == 1:
27
+ if isinstance(module, TransformerTemporalModel):
28
+ return {"sample": x}
29
+ else:
30
+ return x
31
+
32
+ def custom_checkpoint(module, mode=None):
33
+ if mode == None: raise ValueError('Mode for gradient checkpointing cannot be none.')
34
+ custom_forward = None
35
+
36
+ if mode == 'resnet':
37
+ def custom_forward(hidden_states, temb):
38
+ inputs = module(hidden_states, temb)
39
+ return inputs
40
+
41
+ if mode == 'attn':
42
+ def custom_forward(
43
+ hidden_states,
44
+ encoder_hidden_states=None,
45
+ cross_attention_kwargs=None
46
+ ):
47
+ inputs = module(
48
+ hidden_states,
49
+ encoder_hidden_states,
50
+ cross_attention_kwargs
51
+ )
52
+ return inputs
53
+
54
+ if mode == 'temp':
55
+ def custom_forward(hidden_states, num_frames=None):
56
+ inputs = use_temporal(module, num_frames, hidden_states)
57
+ if inputs is None: inputs = module(
58
+ hidden_states,
59
+ num_frames=num_frames
60
+ )
61
+ return inputs
62
+
63
+ return custom_forward
64
+
65
+ def transformer_g_c(transformer, sample, num_frames):
66
+ sample = g_c(custom_checkpoint(transformer, mode='temp'),
67
+ sample, num_frames, use_reentrant=False
68
+ )['sample']
69
+
70
+ return sample
71
+
72
+ def cross_attn_g_c(
73
+ attn,
74
+ temp_attn,
75
+ resnet,
76
+ temp_conv,
77
+ hidden_states,
78
+ encoder_hidden_states,
79
+ cross_attention_kwargs,
80
+ temb,
81
+ num_frames,
82
+ inverse_temp=False
83
+ ):
84
+
85
+ def ordered_g_c(idx):
86
+
87
+ # Self and CrossAttention
88
+ if idx == 0: return g_c(custom_checkpoint(attn, mode='attn'),
89
+ hidden_states, encoder_hidden_states,cross_attention_kwargs, use_reentrant=False
90
+ )['sample']
91
+
92
+ # Temporal Self and CrossAttention
93
+ if idx == 1: return g_c(custom_checkpoint(temp_attn, mode='temp'),
94
+ hidden_states, num_frames, use_reentrant=False)['sample']
95
+
96
+ # Resnets
97
+ if idx == 2: return g_c(custom_checkpoint(resnet, mode='resnet'),
98
+ hidden_states, temb, use_reentrant=False)
99
+
100
+ # Temporal Convolutions
101
+ if idx == 3: return g_c(custom_checkpoint(temp_conv, mode='temp'),
102
+ hidden_states, num_frames, use_reentrant=False
103
+ )
104
+
105
+ # Here we call the function depending on the order in which they are called.
106
+ # For some layers, the orders are different, so we access the appropriate one by index.
107
+
108
+ if not inverse_temp:
109
+ for idx in [0,1,2,3]: hidden_states = ordered_g_c(idx)
110
+ else:
111
+ for idx in [2,3,0,1]: hidden_states = ordered_g_c(idx)
112
+
113
+ return hidden_states
114
+
115
+ def up_down_g_c(resnet, temp_conv, hidden_states, temb, num_frames):
116
+ hidden_states = g_c(custom_checkpoint(resnet, mode='resnet'), hidden_states, temb, use_reentrant=False)
117
+ hidden_states = g_c(custom_checkpoint(temp_conv, mode='temp'),
118
+ hidden_states, num_frames, use_reentrant=False
119
+ )
120
+ return hidden_states
121
+
122
+ def get_down_block(
123
+ down_block_type,
124
+ num_layers,
125
+ in_channels,
126
+ out_channels,
127
+ temb_channels,
128
+ add_downsample,
129
+ resnet_eps,
130
+ resnet_act_fn,
131
+ attn_num_head_channels,
132
+ resnet_groups=None,
133
+ cross_attention_dim=None,
134
+ downsample_padding=None,
135
+ dual_cross_attention=False,
136
+ use_linear_projection=True,
137
+ only_cross_attention=False,
138
+ upcast_attention=False,
139
+ resnet_time_scale_shift="default",
140
+ ):
141
+ if down_block_type == "DownBlock3D":
142
+ return DownBlock3D(
143
+ num_layers=num_layers,
144
+ in_channels=in_channels,
145
+ out_channels=out_channels,
146
+ temb_channels=temb_channels,
147
+ add_downsample=add_downsample,
148
+ resnet_eps=resnet_eps,
149
+ resnet_act_fn=resnet_act_fn,
150
+ resnet_groups=resnet_groups,
151
+ downsample_padding=downsample_padding,
152
+ resnet_time_scale_shift=resnet_time_scale_shift,
153
+ )
154
+ elif down_block_type == "CrossAttnDownBlock3D":
155
+ if cross_attention_dim is None:
156
+ raise ValueError("cross_attention_dim must be specified for CrossAttnDownBlock3D")
157
+ return CrossAttnDownBlock3D(
158
+ num_layers=num_layers,
159
+ in_channels=in_channels,
160
+ out_channels=out_channels,
161
+ temb_channels=temb_channels,
162
+ add_downsample=add_downsample,
163
+ resnet_eps=resnet_eps,
164
+ resnet_act_fn=resnet_act_fn,
165
+ resnet_groups=resnet_groups,
166
+ downsample_padding=downsample_padding,
167
+ cross_attention_dim=cross_attention_dim,
168
+ attn_num_head_channels=attn_num_head_channels,
169
+ dual_cross_attention=dual_cross_attention,
170
+ use_linear_projection=use_linear_projection,
171
+ only_cross_attention=only_cross_attention,
172
+ upcast_attention=upcast_attention,
173
+ resnet_time_scale_shift=resnet_time_scale_shift,
174
+ )
175
+ raise ValueError(f"{down_block_type} does not exist.")
176
+
177
+
178
+ def get_up_block(
179
+ up_block_type,
180
+ num_layers,
181
+ in_channels,
182
+ out_channels,
183
+ prev_output_channel,
184
+ temb_channels,
185
+ add_upsample,
186
+ resnet_eps,
187
+ resnet_act_fn,
188
+ attn_num_head_channels,
189
+ resnet_groups=None,
190
+ cross_attention_dim=None,
191
+ dual_cross_attention=False,
192
+ use_linear_projection=True,
193
+ only_cross_attention=False,
194
+ upcast_attention=False,
195
+ resnet_time_scale_shift="default",
196
+ ):
197
+ if up_block_type == "UpBlock3D":
198
+ return UpBlock3D(
199
+ num_layers=num_layers,
200
+ in_channels=in_channels,
201
+ out_channels=out_channels,
202
+ prev_output_channel=prev_output_channel,
203
+ temb_channels=temb_channels,
204
+ add_upsample=add_upsample,
205
+ resnet_eps=resnet_eps,
206
+ resnet_act_fn=resnet_act_fn,
207
+ resnet_groups=resnet_groups,
208
+ resnet_time_scale_shift=resnet_time_scale_shift,
209
+ )
210
+ elif up_block_type == "CrossAttnUpBlock3D":
211
+ if cross_attention_dim is None:
212
+ raise ValueError("cross_attention_dim must be specified for CrossAttnUpBlock3D")
213
+ return CrossAttnUpBlock3D(
214
+ num_layers=num_layers,
215
+ in_channels=in_channels,
216
+ out_channels=out_channels,
217
+ prev_output_channel=prev_output_channel,
218
+ temb_channels=temb_channels,
219
+ add_upsample=add_upsample,
220
+ resnet_eps=resnet_eps,
221
+ resnet_act_fn=resnet_act_fn,
222
+ resnet_groups=resnet_groups,
223
+ cross_attention_dim=cross_attention_dim,
224
+ attn_num_head_channels=attn_num_head_channels,
225
+ dual_cross_attention=dual_cross_attention,
226
+ use_linear_projection=use_linear_projection,
227
+ only_cross_attention=only_cross_attention,
228
+ upcast_attention=upcast_attention,
229
+ resnet_time_scale_shift=resnet_time_scale_shift,
230
+ )
231
+ raise ValueError(f"{up_block_type} does not exist.")
232
+
233
+
234
+ class UNetMidBlock3DCrossAttn(nn.Module):
235
+ def __init__(
236
+ self,
237
+ in_channels: int,
238
+ temb_channels: int,
239
+ dropout: float = 0.0,
240
+ num_layers: int = 1,
241
+ resnet_eps: float = 1e-6,
242
+ resnet_time_scale_shift: str = "default",
243
+ resnet_act_fn: str = "swish",
244
+ resnet_groups: int = 32,
245
+ resnet_pre_norm: bool = True,
246
+ attn_num_head_channels=1,
247
+ output_scale_factor=1.0,
248
+ cross_attention_dim=1280,
249
+ dual_cross_attention=False,
250
+ use_linear_projection=True,
251
+ upcast_attention=False,
252
+ ):
253
+ super().__init__()
254
+
255
+ self.gradient_checkpointing = False
256
+ self.has_cross_attention = True
257
+ self.attn_num_head_channels = attn_num_head_channels
258
+ resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
259
+
260
+ # there is always at least one resnet
261
+ resnets = [
262
+ ResnetBlock2D(
263
+ in_channels=in_channels,
264
+ out_channels=in_channels,
265
+ temb_channels=temb_channels,
266
+ eps=resnet_eps,
267
+ groups=resnet_groups,
268
+ dropout=dropout,
269
+ time_embedding_norm=resnet_time_scale_shift,
270
+ non_linearity=resnet_act_fn,
271
+ output_scale_factor=output_scale_factor,
272
+ pre_norm=resnet_pre_norm,
273
+ )
274
+ ]
275
+ temp_convs = [
276
+ TemporalConvLayer(
277
+ in_channels,
278
+ in_channels,
279
+ dropout=0.1
280
+ )
281
+ ]
282
+ attentions = []
283
+ temp_attentions = []
284
+
285
+ for _ in range(num_layers):
286
+ attentions.append(
287
+ Transformer2DModel(
288
+ in_channels // attn_num_head_channels,
289
+ attn_num_head_channels,
290
+ in_channels=in_channels,
291
+ num_layers=1,
292
+ cross_attention_dim=cross_attention_dim,
293
+ norm_num_groups=resnet_groups,
294
+ use_linear_projection=use_linear_projection,
295
+ upcast_attention=upcast_attention,
296
+ )
297
+ )
298
+ temp_attentions.append(
299
+ TransformerTemporalModel(
300
+ in_channels // attn_num_head_channels,
301
+ attn_num_head_channels,
302
+ in_channels=in_channels,
303
+ num_layers=1,
304
+ cross_attention_dim=cross_attention_dim,
305
+ norm_num_groups=resnet_groups,
306
+ )
307
+ )
308
+ resnets.append(
309
+ ResnetBlock2D(
310
+ in_channels=in_channels,
311
+ out_channels=in_channels,
312
+ temb_channels=temb_channels,
313
+ eps=resnet_eps,
314
+ groups=resnet_groups,
315
+ dropout=dropout,
316
+ time_embedding_norm=resnet_time_scale_shift,
317
+ non_linearity=resnet_act_fn,
318
+ output_scale_factor=output_scale_factor,
319
+ pre_norm=resnet_pre_norm,
320
+ )
321
+ )
322
+ temp_convs.append(
323
+ TemporalConvLayer(
324
+ in_channels,
325
+ in_channels,
326
+ dropout=0.1
327
+ )
328
+ )
329
+
330
+ self.resnets = nn.ModuleList(resnets)
331
+ self.temp_convs = nn.ModuleList(temp_convs)
332
+ self.attentions = nn.ModuleList(attentions)
333
+ self.temp_attentions = nn.ModuleList(temp_attentions)
334
+
335
+ def forward(
336
+ self,
337
+ hidden_states,
338
+ temb=None,
339
+ encoder_hidden_states=None,
340
+ attention_mask=None,
341
+ num_frames=1,
342
+ cross_attention_kwargs=None,
343
+ ):
344
+ if self.gradient_checkpointing:
345
+ hidden_states = up_down_g_c(
346
+ self.resnets[0],
347
+ self.temp_convs[0],
348
+ hidden_states,
349
+ temb,
350
+ num_frames
351
+ )
352
+ else:
353
+ hidden_states = self.resnets[0](hidden_states, temb)
354
+ hidden_states = self.temp_convs[0](hidden_states, num_frames=num_frames)
355
+
356
+ for attn, temp_attn, resnet, temp_conv in zip(
357
+ self.attentions, self.temp_attentions, self.resnets[1:], self.temp_convs[1:]
358
+ ):
359
+ if self.gradient_checkpointing:
360
+ hidden_states = cross_attn_g_c(
361
+ attn,
362
+ temp_attn,
363
+ resnet,
364
+ temp_conv,
365
+ hidden_states,
366
+ encoder_hidden_states,
367
+ cross_attention_kwargs,
368
+ temb,
369
+ num_frames
370
+ )
371
+ else:
372
+ hidden_states = attn(
373
+ hidden_states,
374
+ encoder_hidden_states=encoder_hidden_states,
375
+ cross_attention_kwargs=cross_attention_kwargs,
376
+ ).sample
377
+
378
+ if num_frames > 1:
379
+ hidden_states = temp_attn(hidden_states, num_frames=num_frames).sample
380
+
381
+ hidden_states = resnet(hidden_states, temb)
382
+
383
+ if num_frames > 1:
384
+ hidden_states = temp_conv(hidden_states, num_frames=num_frames)
385
+
386
+ return hidden_states
387
+
388
+
389
+ class CrossAttnDownBlock3D(nn.Module):
390
+ def __init__(
391
+ self,
392
+ in_channels: int,
393
+ out_channels: int,
394
+ temb_channels: int,
395
+ dropout: float = 0.0,
396
+ num_layers: int = 1,
397
+ resnet_eps: float = 1e-6,
398
+ resnet_time_scale_shift: str = "default",
399
+ resnet_act_fn: str = "swish",
400
+ resnet_groups: int = 32,
401
+ resnet_pre_norm: bool = True,
402
+ attn_num_head_channels=1,
403
+ cross_attention_dim=1280,
404
+ output_scale_factor=1.0,
405
+ downsample_padding=1,
406
+ add_downsample=True,
407
+ dual_cross_attention=False,
408
+ use_linear_projection=False,
409
+ only_cross_attention=False,
410
+ upcast_attention=False,
411
+ ):
412
+ super().__init__()
413
+ resnets = []
414
+ attentions = []
415
+ temp_attentions = []
416
+ temp_convs = []
417
+
418
+ self.gradient_checkpointing = False
419
+ self.has_cross_attention = True
420
+ self.attn_num_head_channels = attn_num_head_channels
421
+
422
+ for i in range(num_layers):
423
+ in_channels = in_channels if i == 0 else out_channels
424
+ resnets.append(
425
+ ResnetBlock2D(
426
+ in_channels=in_channels,
427
+ out_channels=out_channels,
428
+ temb_channels=temb_channels,
429
+ eps=resnet_eps,
430
+ groups=resnet_groups,
431
+ dropout=dropout,
432
+ time_embedding_norm=resnet_time_scale_shift,
433
+ non_linearity=resnet_act_fn,
434
+ output_scale_factor=output_scale_factor,
435
+ pre_norm=resnet_pre_norm,
436
+ )
437
+ )
438
+ temp_convs.append(
439
+ TemporalConvLayer(
440
+ out_channels,
441
+ out_channels,
442
+ dropout=0.1
443
+ )
444
+ )
445
+ attentions.append(
446
+ Transformer2DModel(
447
+ out_channels // attn_num_head_channels,
448
+ attn_num_head_channels,
449
+ in_channels=out_channels,
450
+ num_layers=1,
451
+ cross_attention_dim=cross_attention_dim,
452
+ norm_num_groups=resnet_groups,
453
+ use_linear_projection=use_linear_projection,
454
+ only_cross_attention=only_cross_attention,
455
+ upcast_attention=upcast_attention,
456
+ )
457
+ )
458
+ temp_attentions.append(
459
+ TransformerTemporalModel(
460
+ out_channels // attn_num_head_channels,
461
+ attn_num_head_channels,
462
+ in_channels=out_channels,
463
+ num_layers=1,
464
+ cross_attention_dim=cross_attention_dim,
465
+ norm_num_groups=resnet_groups,
466
+ )
467
+ )
468
+ self.resnets = nn.ModuleList(resnets)
469
+ self.temp_convs = nn.ModuleList(temp_convs)
470
+ self.attentions = nn.ModuleList(attentions)
471
+ self.temp_attentions = nn.ModuleList(temp_attentions)
472
+
473
+ if add_downsample:
474
+ self.downsamplers = nn.ModuleList(
475
+ [
476
+ Downsample2D(
477
+ out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
478
+ )
479
+ ]
480
+ )
481
+ else:
482
+ self.downsamplers = None
483
+
484
+ def forward(
485
+ self,
486
+ hidden_states,
487
+ temb=None,
488
+ encoder_hidden_states=None,
489
+ attention_mask=None,
490
+ num_frames=1,
491
+ cross_attention_kwargs=None,
492
+ ):
493
+ # TODO(Patrick, William) - attention mask is not used
494
+ output_states = ()
495
+
496
+ for resnet, temp_conv, attn, temp_attn in zip(
497
+ self.resnets, self.temp_convs, self.attentions, self.temp_attentions
498
+ ):
499
+
500
+ if self.gradient_checkpointing:
501
+ hidden_states = cross_attn_g_c(
502
+ attn,
503
+ temp_attn,
504
+ resnet,
505
+ temp_conv,
506
+ hidden_states,
507
+ encoder_hidden_states,
508
+ cross_attention_kwargs,
509
+ temb,
510
+ num_frames,
511
+ inverse_temp=True
512
+ )
513
+ else:
514
+ hidden_states = resnet(hidden_states, temb)
515
+
516
+ if num_frames > 1:
517
+ hidden_states = temp_conv(hidden_states, num_frames=num_frames)
518
+
519
+ hidden_states = attn(
520
+ hidden_states,
521
+ encoder_hidden_states=encoder_hidden_states,
522
+ cross_attention_kwargs=cross_attention_kwargs,
523
+ ).sample
524
+
525
+ if num_frames > 1:
526
+ hidden_states = temp_attn(hidden_states, num_frames=num_frames).sample
527
+
528
+ output_states += (hidden_states,)
529
+
530
+ if self.downsamplers is not None:
531
+ for downsampler in self.downsamplers:
532
+ hidden_states = downsampler(hidden_states)
533
+
534
+ output_states += (hidden_states,)
535
+
536
+ return hidden_states, output_states
537
+
538
+
539
+ class DownBlock3D(nn.Module):
540
+ def __init__(
541
+ self,
542
+ in_channels: int,
543
+ out_channels: int,
544
+ temb_channels: int,
545
+ dropout: float = 0.0,
546
+ num_layers: int = 1,
547
+ resnet_eps: float = 1e-6,
548
+ resnet_time_scale_shift: str = "default",
549
+ resnet_act_fn: str = "swish",
550
+ resnet_groups: int = 32,
551
+ resnet_pre_norm: bool = True,
552
+ output_scale_factor=1.0,
553
+ add_downsample=True,
554
+ downsample_padding=1,
555
+ ):
556
+ super().__init__()
557
+ resnets = []
558
+ temp_convs = []
559
+
560
+ self.gradient_checkpointing = False
561
+ for i in range(num_layers):
562
+ in_channels = in_channels if i == 0 else out_channels
563
+ resnets.append(
564
+ ResnetBlock2D(
565
+ in_channels=in_channels,
566
+ out_channels=out_channels,
567
+ temb_channels=temb_channels,
568
+ eps=resnet_eps,
569
+ groups=resnet_groups,
570
+ dropout=dropout,
571
+ time_embedding_norm=resnet_time_scale_shift,
572
+ non_linearity=resnet_act_fn,
573
+ output_scale_factor=output_scale_factor,
574
+ pre_norm=resnet_pre_norm,
575
+ )
576
+ )
577
+ temp_convs.append(
578
+ TemporalConvLayer(
579
+ out_channels,
580
+ out_channels,
581
+ dropout=0.1
582
+ )
583
+ )
584
+
585
+ self.resnets = nn.ModuleList(resnets)
586
+ self.temp_convs = nn.ModuleList(temp_convs)
587
+
588
+ if add_downsample:
589
+ self.downsamplers = nn.ModuleList(
590
+ [
591
+ Downsample2D(
592
+ out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
593
+ )
594
+ ]
595
+ )
596
+ else:
597
+ self.downsamplers = None
598
+
599
+ def forward(self, hidden_states, temb=None, num_frames=1):
600
+ output_states = ()
601
+
602
+ for resnet, temp_conv in zip(self.resnets, self.temp_convs):
603
+ if self.gradient_checkpointing:
604
+ hidden_states = up_down_g_c(resnet, temp_conv, hidden_states, temb, num_frames)
605
+ else:
606
+ hidden_states = resnet(hidden_states, temb)
607
+
608
+ if num_frames > 1:
609
+ hidden_states = temp_conv(hidden_states, num_frames=num_frames)
610
+
611
+ output_states += (hidden_states,)
612
+
613
+ if self.downsamplers is not None:
614
+ for downsampler in self.downsamplers:
615
+ hidden_states = downsampler(hidden_states)
616
+
617
+ output_states += (hidden_states,)
618
+
619
+ return hidden_states, output_states
620
+
621
+
622
+ class CrossAttnUpBlock3D(nn.Module):
623
+ def __init__(
624
+ self,
625
+ in_channels: int,
626
+ out_channels: int,
627
+ prev_output_channel: int,
628
+ temb_channels: int,
629
+ dropout: float = 0.0,
630
+ num_layers: int = 1,
631
+ resnet_eps: float = 1e-6,
632
+ resnet_time_scale_shift: str = "default",
633
+ resnet_act_fn: str = "swish",
634
+ resnet_groups: int = 32,
635
+ resnet_pre_norm: bool = True,
636
+ attn_num_head_channels=1,
637
+ cross_attention_dim=1280,
638
+ output_scale_factor=1.0,
639
+ add_upsample=True,
640
+ dual_cross_attention=False,
641
+ use_linear_projection=False,
642
+ only_cross_attention=False,
643
+ upcast_attention=False,
644
+ ):
645
+ super().__init__()
646
+ resnets = []
647
+ temp_convs = []
648
+ attentions = []
649
+ temp_attentions = []
650
+
651
+ self.gradient_checkpointing = False
652
+ self.has_cross_attention = True
653
+ self.attn_num_head_channels = attn_num_head_channels
654
+
655
+ for i in range(num_layers):
656
+ res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
657
+ resnet_in_channels = prev_output_channel if i == 0 else out_channels
658
+
659
+ resnets.append(
660
+ ResnetBlock2D(
661
+ in_channels=resnet_in_channels + res_skip_channels,
662
+ out_channels=out_channels,
663
+ temb_channels=temb_channels,
664
+ eps=resnet_eps,
665
+ groups=resnet_groups,
666
+ dropout=dropout,
667
+ time_embedding_norm=resnet_time_scale_shift,
668
+ non_linearity=resnet_act_fn,
669
+ output_scale_factor=output_scale_factor,
670
+ pre_norm=resnet_pre_norm,
671
+ )
672
+ )
673
+ temp_convs.append(
674
+ TemporalConvLayer(
675
+ out_channels,
676
+ out_channels,
677
+ dropout=0.1
678
+ )
679
+ )
680
+ attentions.append(
681
+ Transformer2DModel(
682
+ out_channels // attn_num_head_channels,
683
+ attn_num_head_channels,
684
+ in_channels=out_channels,
685
+ num_layers=1,
686
+ cross_attention_dim=cross_attention_dim,
687
+ norm_num_groups=resnet_groups,
688
+ use_linear_projection=use_linear_projection,
689
+ only_cross_attention=only_cross_attention,
690
+ upcast_attention=upcast_attention,
691
+ )
692
+ )
693
+ temp_attentions.append(
694
+ TransformerTemporalModel(
695
+ out_channels // attn_num_head_channels,
696
+ attn_num_head_channels,
697
+ in_channels=out_channels,
698
+ num_layers=1,
699
+ cross_attention_dim=cross_attention_dim,
700
+ norm_num_groups=resnet_groups,
701
+ )
702
+ )
703
+ self.resnets = nn.ModuleList(resnets)
704
+ self.temp_convs = nn.ModuleList(temp_convs)
705
+ self.attentions = nn.ModuleList(attentions)
706
+ self.temp_attentions = nn.ModuleList(temp_attentions)
707
+
708
+ if add_upsample:
709
+ self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
710
+ else:
711
+ self.upsamplers = None
712
+
713
+ def forward(
714
+ self,
715
+ hidden_states,
716
+ res_hidden_states_tuple,
717
+ temb=None,
718
+ encoder_hidden_states=None,
719
+ upsample_size=None,
720
+ attention_mask=None,
721
+ num_frames=1,
722
+ cross_attention_kwargs=None,
723
+ ):
724
+ # TODO(Patrick, William) - attention mask is not used
725
+ for resnet, temp_conv, attn, temp_attn in zip(
726
+ self.resnets, self.temp_convs, self.attentions, self.temp_attentions
727
+ ):
728
+ # pop res hidden states
729
+ res_hidden_states = res_hidden_states_tuple[-1]
730
+ res_hidden_states_tuple = res_hidden_states_tuple[:-1]
731
+ hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
732
+
733
+ if self.gradient_checkpointing:
734
+ hidden_states = cross_attn_g_c(
735
+ attn,
736
+ temp_attn,
737
+ resnet,
738
+ temp_conv,
739
+ hidden_states,
740
+ encoder_hidden_states,
741
+ cross_attention_kwargs,
742
+ temb,
743
+ num_frames,
744
+ inverse_temp=True
745
+ )
746
+ else:
747
+ hidden_states = resnet(hidden_states, temb)
748
+
749
+ if num_frames > 1:
750
+ hidden_states = temp_conv(hidden_states, num_frames=num_frames)
751
+
752
+ hidden_states = attn(
753
+ hidden_states,
754
+ encoder_hidden_states=encoder_hidden_states,
755
+ cross_attention_kwargs=cross_attention_kwargs,
756
+ ).sample
757
+
758
+ if num_frames > 1:
759
+ hidden_states = temp_attn(hidden_states, num_frames=num_frames).sample
760
+
761
+ if self.upsamplers is not None:
762
+ for upsampler in self.upsamplers:
763
+ hidden_states = upsampler(hidden_states, upsample_size)
764
+
765
+ return hidden_states
766
+
767
+
768
+ class UpBlock3D(nn.Module):
769
+ def __init__(
770
+ self,
771
+ in_channels: int,
772
+ prev_output_channel: int,
773
+ out_channels: int,
774
+ temb_channels: int,
775
+ dropout: float = 0.0,
776
+ num_layers: int = 1,
777
+ resnet_eps: float = 1e-6,
778
+ resnet_time_scale_shift: str = "default",
779
+ resnet_act_fn: str = "swish",
780
+ resnet_groups: int = 32,
781
+ resnet_pre_norm: bool = True,
782
+ output_scale_factor=1.0,
783
+ add_upsample=True,
784
+ ):
785
+ super().__init__()
786
+ resnets = []
787
+ temp_convs = []
788
+ self.gradient_checkpointing = False
789
+ for i in range(num_layers):
790
+ res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
791
+ resnet_in_channels = prev_output_channel if i == 0 else out_channels
792
+
793
+ resnets.append(
794
+ ResnetBlock2D(
795
+ in_channels=resnet_in_channels + res_skip_channels,
796
+ out_channels=out_channels,
797
+ temb_channels=temb_channels,
798
+ eps=resnet_eps,
799
+ groups=resnet_groups,
800
+ dropout=dropout,
801
+ time_embedding_norm=resnet_time_scale_shift,
802
+ non_linearity=resnet_act_fn,
803
+ output_scale_factor=output_scale_factor,
804
+ pre_norm=resnet_pre_norm,
805
+ )
806
+ )
807
+ temp_convs.append(
808
+ TemporalConvLayer(
809
+ out_channels,
810
+ out_channels,
811
+ dropout=0.1
812
+ )
813
+ )
814
+
815
+ self.resnets = nn.ModuleList(resnets)
816
+ self.temp_convs = nn.ModuleList(temp_convs)
817
+
818
+ if add_upsample:
819
+ self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
820
+ else:
821
+ self.upsamplers = None
822
+
823
+ def forward(self, hidden_states, res_hidden_states_tuple, temb=None, upsample_size=None, num_frames=1):
824
+ for resnet, temp_conv in zip(self.resnets, self.temp_convs):
825
+ # pop res hidden states
826
+ res_hidden_states = res_hidden_states_tuple[-1]
827
+ res_hidden_states_tuple = res_hidden_states_tuple[:-1]
828
+ hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
829
+
830
+ if self.gradient_checkpointing:
831
+ hidden_states = up_down_g_c(resnet, temp_conv, hidden_states, temb, num_frames)
832
+ else:
833
+ hidden_states = resnet(hidden_states, temb)
834
+
835
+ if num_frames > 1:
836
+ hidden_states = temp_conv(hidden_states, num_frames=num_frames)
837
+
838
+ if self.upsamplers is not None:
839
+ for upsampler in self.upsamplers:
840
+ hidden_states = upsampler(hidden_states, upsample_size)
841
+
842
+ return hidden_states
models/unet/unet_3d_condition.py ADDED
@@ -0,0 +1,500 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2023 Alibaba DAMO-VILAB and The HuggingFace Team. All rights reserved.
2
+ # Copyright 2023 The ModelScope Team.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ from dataclasses import dataclass
16
+ from typing import Any, Dict, List, Optional, Tuple, Union
17
+
18
+ import torch
19
+ import torch.nn as nn
20
+ import torch.utils.checkpoint
21
+
22
+ from diffusers.configuration_utils import ConfigMixin, register_to_config
23
+ from diffusers.utils import BaseOutput, logging
24
+ from diffusers.models.embeddings import TimestepEmbedding, Timesteps
25
+ from diffusers.models.modeling_utils import ModelMixin
26
+ from diffusers.models.transformer_temporal import TransformerTemporalModel
27
+ from .unet_3d_blocks import (
28
+ CrossAttnDownBlock3D,
29
+ CrossAttnUpBlock3D,
30
+ DownBlock3D,
31
+ UNetMidBlock3DCrossAttn,
32
+ UpBlock3D,
33
+ get_down_block,
34
+ get_up_block,
35
+ transformer_g_c
36
+ )
37
+
38
+
39
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
40
+
41
+
42
+ @dataclass
43
+ class UNet3DConditionOutput(BaseOutput):
44
+ """
45
+ Args:
46
+ sample (`torch.FloatTensor` of shape `(batch_size, num_frames, num_channels, height, width)`):
47
+ Hidden states conditioned on `encoder_hidden_states` input. Output of last layer of model.
48
+ """
49
+
50
+ sample: torch.FloatTensor
51
+
52
+
53
+ class UNet3DConditionModel(ModelMixin, ConfigMixin):
54
+ r"""
55
+ UNet3DConditionModel is a conditional 2D UNet model that takes in a noisy sample, conditional state, and a timestep
56
+ and returns sample shaped output.
57
+
58
+ This model inherits from [`ModelMixin`]. Check the superclass documentation for the generic methods the library
59
+ implements for all the models (such as downloading or saving, etc.)
60
+
61
+ Parameters:
62
+ sample_size (`int` or `Tuple[int, int]`, *optional*, defaults to `None`):
63
+ Height and width of input/output sample.
64
+ in_channels (`int`, *optional*, defaults to 4): The number of channels in the input sample.
65
+ out_channels (`int`, *optional*, defaults to 4): The number of channels in the output.
66
+ down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`):
67
+ The tuple of downsample blocks to use.
68
+ up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D",)`):
69
+ The tuple of upsample blocks to use.
70
+ block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`):
71
+ The tuple of output channels for each block.
72
+ layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block.
73
+ downsample_padding (`int`, *optional*, defaults to 1): The padding to use for the downsampling convolution.
74
+ mid_block_scale_factor (`float`, *optional*, defaults to 1.0): The scale factor to use for the mid block.
75
+ act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
76
+ norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for the normalization.
77
+ If `None`, it will skip the normalization and activation layers in post-processing
78
+ norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon to use for the normalization.
79
+ cross_attention_dim (`int`, *optional*, defaults to 1280): The dimension of the cross attention features.
80
+ attention_head_dim (`int`, *optional*, defaults to 8): The dimension of the attention heads.
81
+ """
82
+
83
+ _supports_gradient_checkpointing = True
84
+
85
+ @register_to_config
86
+ def __init__(
87
+ self,
88
+ sample_size: Optional[int] = None,
89
+ in_channels: int = 4,
90
+ out_channels: int = 4,
91
+ down_block_types: Tuple[str] = (
92
+ "CrossAttnDownBlock3D",
93
+ "CrossAttnDownBlock3D",
94
+ "CrossAttnDownBlock3D",
95
+ "DownBlock3D",
96
+ ),
97
+ up_block_types: Tuple[str] = ("UpBlock3D", "CrossAttnUpBlock3D", "CrossAttnUpBlock3D", "CrossAttnUpBlock3D"),
98
+ block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
99
+ layers_per_block: int = 2,
100
+ downsample_padding: int = 1,
101
+ mid_block_scale_factor: float = 1,
102
+ act_fn: str = "silu",
103
+ norm_num_groups: Optional[int] = 32,
104
+ norm_eps: float = 1e-5,
105
+ cross_attention_dim: int = 1024,
106
+ attention_head_dim: Union[int, Tuple[int]] = 64,
107
+ ):
108
+ super().__init__()
109
+
110
+ self.sample_size = sample_size
111
+ self.gradient_checkpointing = False
112
+ # Check inputs
113
+ if len(down_block_types) != len(up_block_types):
114
+ raise ValueError(
115
+ f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}."
116
+ )
117
+
118
+ if len(block_out_channels) != len(down_block_types):
119
+ raise ValueError(
120
+ f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
121
+ )
122
+
123
+ if not isinstance(attention_head_dim, int) and len(attention_head_dim) != len(down_block_types):
124
+ raise ValueError(
125
+ f"Must provide the same number of `attention_head_dim` as `down_block_types`. `attention_head_dim`: {attention_head_dim}. `down_block_types`: {down_block_types}."
126
+ )
127
+
128
+ # input
129
+ conv_in_kernel = 3
130
+ conv_out_kernel = 3
131
+ conv_in_padding = (conv_in_kernel - 1) // 2
132
+ self.conv_in = nn.Conv2d(
133
+ in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding
134
+ )
135
+
136
+ # time
137
+ time_embed_dim = block_out_channels[0] * 4
138
+ self.time_proj = Timesteps(block_out_channels[0], True, 0)
139
+ timestep_input_dim = block_out_channels[0]
140
+
141
+ self.time_embedding = TimestepEmbedding(
142
+ timestep_input_dim,
143
+ time_embed_dim,
144
+ act_fn=act_fn,
145
+ )
146
+
147
+ self.transformer_in = TransformerTemporalModel(
148
+ num_attention_heads=8,
149
+ attention_head_dim=attention_head_dim,
150
+ in_channels=block_out_channels[0],
151
+ num_layers=1,
152
+ )
153
+
154
+ # class embedding
155
+ self.down_blocks = nn.ModuleList([])
156
+ self.up_blocks = nn.ModuleList([])
157
+
158
+ if isinstance(attention_head_dim, int):
159
+ attention_head_dim = (attention_head_dim,) * len(down_block_types)
160
+
161
+ # down
162
+ output_channel = block_out_channels[0]
163
+ for i, down_block_type in enumerate(down_block_types):
164
+ input_channel = output_channel
165
+ output_channel = block_out_channels[i]
166
+ is_final_block = i == len(block_out_channels) - 1
167
+
168
+ down_block = get_down_block(
169
+ down_block_type,
170
+ num_layers=layers_per_block,
171
+ in_channels=input_channel,
172
+ out_channels=output_channel,
173
+ temb_channels=time_embed_dim,
174
+ add_downsample=not is_final_block,
175
+ resnet_eps=norm_eps,
176
+ resnet_act_fn=act_fn,
177
+ resnet_groups=norm_num_groups,
178
+ cross_attention_dim=cross_attention_dim,
179
+ attn_num_head_channels=attention_head_dim[i],
180
+ downsample_padding=downsample_padding,
181
+ dual_cross_attention=False,
182
+ )
183
+ self.down_blocks.append(down_block)
184
+
185
+ # mid
186
+ self.mid_block = UNetMidBlock3DCrossAttn(
187
+ in_channels=block_out_channels[-1],
188
+ temb_channels=time_embed_dim,
189
+ resnet_eps=norm_eps,
190
+ resnet_act_fn=act_fn,
191
+ output_scale_factor=mid_block_scale_factor,
192
+ cross_attention_dim=cross_attention_dim,
193
+ attn_num_head_channels=attention_head_dim[-1],
194
+ resnet_groups=norm_num_groups,
195
+ dual_cross_attention=False,
196
+ )
197
+
198
+ # count how many layers upsample the images
199
+ self.num_upsamplers = 0
200
+
201
+ # up
202
+ reversed_block_out_channels = list(reversed(block_out_channels))
203
+ reversed_attention_head_dim = list(reversed(attention_head_dim))
204
+
205
+ output_channel = reversed_block_out_channels[0]
206
+ for i, up_block_type in enumerate(up_block_types):
207
+ is_final_block = i == len(block_out_channels) - 1
208
+
209
+ prev_output_channel = output_channel
210
+ output_channel = reversed_block_out_channels[i]
211
+ input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]
212
+
213
+ # add upsample block for all BUT final layer
214
+ if not is_final_block:
215
+ add_upsample = True
216
+ self.num_upsamplers += 1
217
+ else:
218
+ add_upsample = False
219
+
220
+ up_block = get_up_block(
221
+ up_block_type,
222
+ num_layers=layers_per_block + 1,
223
+ in_channels=input_channel,
224
+ out_channels=output_channel,
225
+ prev_output_channel=prev_output_channel,
226
+ temb_channels=time_embed_dim,
227
+ add_upsample=add_upsample,
228
+ resnet_eps=norm_eps,
229
+ resnet_act_fn=act_fn,
230
+ resnet_groups=norm_num_groups,
231
+ cross_attention_dim=cross_attention_dim,
232
+ attn_num_head_channels=reversed_attention_head_dim[i],
233
+ dual_cross_attention=False,
234
+ )
235
+ self.up_blocks.append(up_block)
236
+ prev_output_channel = output_channel
237
+
238
+ # out
239
+ if norm_num_groups is not None:
240
+ self.conv_norm_out = nn.GroupNorm(
241
+ num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps
242
+ )
243
+ self.conv_act = nn.SiLU()
244
+ else:
245
+ self.conv_norm_out = None
246
+ self.conv_act = None
247
+
248
+ conv_out_padding = (conv_out_kernel - 1) // 2
249
+ self.conv_out = nn.Conv2d(
250
+ block_out_channels[0], out_channels, kernel_size=conv_out_kernel, padding=conv_out_padding
251
+ )
252
+
253
+ def set_attention_slice(self, slice_size):
254
+ r"""
255
+ Enable sliced attention computation.
256
+
257
+ When this option is enabled, the attention module will split the input tensor in slices, to compute attention
258
+ in several steps. This is useful to save some memory in exchange for a small speed decrease.
259
+
260
+ Args:
261
+ slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
262
+ When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If
263
+ `"max"`, maxium amount of memory will be saved by running only one slice at a time. If a number is
264
+ provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
265
+ must be a multiple of `slice_size`.
266
+ """
267
+ sliceable_head_dims = []
268
+
269
+ def fn_recursive_retrieve_slicable_dims(module: torch.nn.Module):
270
+ if hasattr(module, "set_attention_slice"):
271
+ sliceable_head_dims.append(module.sliceable_head_dim)
272
+
273
+ for child in module.children():
274
+ fn_recursive_retrieve_slicable_dims(child)
275
+
276
+ # retrieve number of attention layers
277
+ for module in self.children():
278
+ fn_recursive_retrieve_slicable_dims(module)
279
+
280
+ num_slicable_layers = len(sliceable_head_dims)
281
+
282
+ if slice_size == "auto":
283
+ # half the attention head size is usually a good trade-off between
284
+ # speed and memory
285
+ slice_size = [dim // 2 for dim in sliceable_head_dims]
286
+ elif slice_size == "max":
287
+ # make smallest slice possible
288
+ slice_size = num_slicable_layers * [1]
289
+
290
+ slice_size = num_slicable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size
291
+
292
+ if len(slice_size) != len(sliceable_head_dims):
293
+ raise ValueError(
294
+ f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
295
+ f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
296
+ )
297
+
298
+ for i in range(len(slice_size)):
299
+ size = slice_size[i]
300
+ dim = sliceable_head_dims[i]
301
+ if size is not None and size > dim:
302
+ raise ValueError(f"size {size} has to be smaller or equal to {dim}.")
303
+
304
+ # Recursively walk through all the children.
305
+ # Any children which exposes the set_attention_slice method
306
+ # gets the message
307
+ def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]):
308
+ if hasattr(module, "set_attention_slice"):
309
+ module.set_attention_slice(slice_size.pop())
310
+
311
+ for child in module.children():
312
+ fn_recursive_set_attention_slice(child, slice_size)
313
+
314
+ reversed_slice_size = list(reversed(slice_size))
315
+ for module in self.children():
316
+ fn_recursive_set_attention_slice(module, reversed_slice_size)
317
+
318
+ def _set_gradient_checkpointing(self, value=False):
319
+ self.gradient_checkpointing = value
320
+ self.mid_block.gradient_checkpointing = value
321
+ for module in self.down_blocks + self.up_blocks:
322
+ if isinstance(module, (CrossAttnDownBlock3D, DownBlock3D, CrossAttnUpBlock3D, UpBlock3D)):
323
+ module.gradient_checkpointing = value
324
+
325
+ def forward(
326
+ self,
327
+ sample: torch.FloatTensor,
328
+ timestep: Union[torch.Tensor, float, int],
329
+ encoder_hidden_states: torch.Tensor,
330
+ class_labels: Optional[torch.Tensor] = None,
331
+ timestep_cond: Optional[torch.Tensor] = None,
332
+ attention_mask: Optional[torch.Tensor] = None,
333
+ cross_attention_kwargs: Optional[Dict[str, Any]] = None,
334
+ down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
335
+ mid_block_additional_residual: Optional[torch.Tensor] = None,
336
+ return_dict: bool = True,
337
+ ) -> Union[UNet3DConditionOutput, Tuple]:
338
+ r"""
339
+ Args:
340
+ sample (`torch.FloatTensor`): (batch, num_frames, channel, height, width) noisy inputs tensor
341
+ timestep (`torch.FloatTensor` or `float` or `int`): (batch) timesteps
342
+ encoder_hidden_states (`torch.FloatTensor`): (batch, sequence_length, feature_dim) encoder hidden states
343
+ return_dict (`bool`, *optional*, defaults to `True`):
344
+ Whether or not to return a [`models.unet_2d_condition.UNet3DConditionOutput`] instead of a plain tuple.
345
+ cross_attention_kwargs (`dict`, *optional*):
346
+ A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
347
+ `self.processor` in
348
+ [diffusers.cross_attention](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py).
349
+
350
+ Returns:
351
+ [`~models.unet_2d_condition.UNet3DConditionOutput`] or `tuple`:
352
+ [`~models.unet_2d_condition.UNet3DConditionOutput`] if `return_dict` is True, otherwise a `tuple`. When
353
+ returning a tuple, the first element is the sample tensor.
354
+ """
355
+ # By default samples have to be AT least a multiple of the overall upsampling factor.
356
+ # The overall upsampling factor is equal to 2 ** (# num of upsampling layears).
357
+ # However, the upsampling interpolation output size can be forced to fit any upsampling size
358
+ # on the fly if necessary.
359
+ default_overall_up_factor = 2**self.num_upsamplers
360
+
361
+ # upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
362
+ forward_upsample_size = False
363
+ upsample_size = None
364
+
365
+ if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]):
366
+ logger.info("Forward upsample size to force interpolation output size.")
367
+ forward_upsample_size = True
368
+
369
+ # prepare attention_mask
370
+ if attention_mask is not None:
371
+ attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
372
+ attention_mask = attention_mask.unsqueeze(1)
373
+
374
+ # 1. time
375
+ timesteps = timestep
376
+ if not torch.is_tensor(timesteps):
377
+ # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
378
+ # This would be a good case for the `match` statement (Python 3.10+)
379
+ is_mps = sample.device.type == "mps"
380
+ if isinstance(timestep, float):
381
+ dtype = torch.float32 if is_mps else torch.float64
382
+ else:
383
+ dtype = torch.int32 if is_mps else torch.int64
384
+ timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
385
+ elif len(timesteps.shape) == 0:
386
+ timesteps = timesteps[None].to(sample.device)
387
+
388
+ # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
389
+ num_frames = sample.shape[2]
390
+ timesteps = timesteps.expand(sample.shape[0])
391
+
392
+ t_emb = self.time_proj(timesteps)
393
+
394
+ # timesteps does not contain any weights and will always return f32 tensors
395
+ # but time_embedding might actually be running in fp16. so we need to cast here.
396
+ # there might be better ways to encapsulate this.
397
+ t_emb = t_emb.to(dtype=self.dtype)
398
+
399
+ emb = self.time_embedding(t_emb, timestep_cond)
400
+ emb = emb.repeat_interleave(repeats=num_frames, dim=0)
401
+ encoder_hidden_states = encoder_hidden_states.repeat_interleave(repeats=num_frames, dim=0)
402
+
403
+ # 2. pre-process
404
+ sample = sample.permute(0, 2, 1, 3, 4).reshape((sample.shape[0] * num_frames, -1) + sample.shape[3:])
405
+ sample = self.conv_in(sample)
406
+
407
+ if num_frames > 1:
408
+ if self.gradient_checkpointing:
409
+ sample = transformer_g_c(self.transformer_in, sample, num_frames)
410
+ else:
411
+ sample = self.transformer_in(sample, num_frames=num_frames).sample
412
+
413
+ # 3. down
414
+ down_block_res_samples = (sample,)
415
+ for downsample_block in self.down_blocks:
416
+ if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
417
+ sample, res_samples = downsample_block(
418
+ hidden_states=sample,
419
+ temb=emb,
420
+ encoder_hidden_states=encoder_hidden_states,
421
+ attention_mask=attention_mask,
422
+ num_frames=num_frames,
423
+ cross_attention_kwargs=cross_attention_kwargs,
424
+ )
425
+ else:
426
+ sample, res_samples = downsample_block(hidden_states=sample, temb=emb, num_frames=num_frames)
427
+
428
+ down_block_res_samples += res_samples
429
+
430
+ if down_block_additional_residuals is not None:
431
+ new_down_block_res_samples = ()
432
+
433
+ for down_block_res_sample, down_block_additional_residual in zip(
434
+ down_block_res_samples, down_block_additional_residuals
435
+ ):
436
+ down_block_res_sample = down_block_res_sample + down_block_additional_residual
437
+ new_down_block_res_samples += (down_block_res_sample,)
438
+
439
+ down_block_res_samples = new_down_block_res_samples
440
+
441
+ # 4. mid
442
+ if self.mid_block is not None:
443
+ sample = self.mid_block(
444
+ sample,
445
+ emb,
446
+ encoder_hidden_states=encoder_hidden_states,
447
+ attention_mask=attention_mask,
448
+ num_frames=num_frames,
449
+ cross_attention_kwargs=cross_attention_kwargs,
450
+ )
451
+
452
+ if mid_block_additional_residual is not None:
453
+ sample = sample + mid_block_additional_residual
454
+
455
+ # 5. up
456
+ for i, upsample_block in enumerate(self.up_blocks):
457
+ is_final_block = i == len(self.up_blocks) - 1
458
+
459
+ res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
460
+ down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
461
+
462
+ # if we have not reached the final block and need to forward the
463
+ # upsample size, we do it here
464
+ if not is_final_block and forward_upsample_size:
465
+ upsample_size = down_block_res_samples[-1].shape[2:]
466
+
467
+ if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
468
+ sample = upsample_block(
469
+ hidden_states=sample,
470
+ temb=emb,
471
+ res_hidden_states_tuple=res_samples,
472
+ encoder_hidden_states=encoder_hidden_states,
473
+ upsample_size=upsample_size,
474
+ attention_mask=attention_mask,
475
+ num_frames=num_frames,
476
+ cross_attention_kwargs=cross_attention_kwargs,
477
+ )
478
+ else:
479
+ sample = upsample_block(
480
+ hidden_states=sample,
481
+ temb=emb,
482
+ res_hidden_states_tuple=res_samples,
483
+ upsample_size=upsample_size,
484
+ num_frames=num_frames,
485
+ )
486
+
487
+ # 6. post-process
488
+ if self.conv_norm_out:
489
+ sample = self.conv_norm_out(sample)
490
+ sample = self.conv_act(sample)
491
+
492
+ sample = self.conv_out(sample)
493
+
494
+ # reshape to (batch, channel, framerate, width, height)
495
+ sample = sample[None, :].reshape((-1, num_frames) + sample.shape[1:]).permute(0, 2, 1, 3, 4)
496
+
497
+ if not return_dict:
498
+ return (sample,)
499
+
500
+ return UNet3DConditionOutput(sample=sample)
noise_init/__init__.py ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ from .freq_init import FreqInit
2
+ from .blend_init import BlendInit
3
+ from .blend_freq_init import BlendFreqInit
4
+ from .fft_init import FFTInit
noise_init/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (350 Bytes). View file
 
noise_init/__pycache__/blend_freq_init.cpython-310.pyc ADDED
Binary file (1.1 kB). View file
 
noise_init/__pycache__/blend_init.cpython-310.pyc ADDED
Binary file (430 Bytes). View file
 
noise_init/__pycache__/fft_init.cpython-310.pyc ADDED
Binary file (5.35 kB). View file