File size: 2,849 Bytes
079c32c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
from easydict import EasyDict
cartpole_dqfd_config = dict(
exp_name='cartpole_dqfd_seed0',
env=dict(
collector_env_num=8,
evaluator_env_num=5,
n_evaluator_episode=5,
stop_value=195,
),
policy=dict(
cuda=True,
priority=True,
model=dict(
obs_shape=4,
action_shape=2,
encoder_hidden_size_list=[128, 128, 64],
dueling=True,
),
nstep=3,
discount_factor=0.97,
learn=dict(
batch_size=64,
learning_rate=0.001,
lambda1=1, # n-step return
lambda2=3.0, # supervised loss
# set this to be 0 (L2 loss = 0) with expert_replay_buffer_size = 0 and lambda1 = 0
# recover the one step pdd dqn
lambda3=0, # L2 regularization
per_train_iter_k=10,
expert_replay_buffer_size=10000, # justify the buffer size of the expert buffer
),
collect=dict(
n_sample=8,
# Users should add their own model path here. Model path should lead to a model.
# Absolute path is recommended.
# In DI-engine, it is ``exp_name/ckpt/ckpt_best.pth.tar``.
model_path='model_path_placeholder',
),
# note: this is the times after which you learns to evaluate
eval=dict(evaluator=dict(eval_freq=50, )),
other=dict(
eps=dict(
type='exp',
start=0.95,
end=0.1,
decay=10000,
),
replay_buffer=dict(replay_buffer_size=20000, ),
),
),
)
cartpole_dqfd_config = EasyDict(cartpole_dqfd_config)
main_config = cartpole_dqfd_config
cartpole_dqfd_create_config = dict(
env=dict(
type='cartpole',
import_names=['dizoo.classic_control.cartpole.envs.cartpole_env'],
),
env_manager=dict(type='base'),
policy=dict(type='dqfd'),
)
cartpole_dqfd_create_config = EasyDict(cartpole_dqfd_create_config)
create_config = cartpole_dqfd_create_config
if __name__ == "__main__":
# or you can enter `ding -m serial_dqfd -c cartpole_dqfd_config.py -s 0`
# then input ``cartpole_dqfd_config.py`` upon the instructions.
# The reason we need to input the dqfd config is we have to borrow its ``_get_train_sample`` function
# in the collector part even though the expert model may be generated from other Q learning algos.
from ding.entry.serial_entry_dqfd import serial_pipeline_dqfd
from dizoo.classic_control.cartpole.config import cartpole_dqfd_config, cartpole_dqfd_create_config
expert_main_config = cartpole_dqfd_config
expert_create_config = cartpole_dqfd_create_config
serial_pipeline_dqfd((main_config, create_config), (expert_main_config, expert_create_config), seed=0)
|