File size: 1,803 Bytes
079c32c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 |
from easydict import EasyDict
cartpole_dqn_config = dict(
exp_name='cartpole_dqn_seed0',
env=dict(
collector_env_num=8,
evaluator_env_num=5,
n_evaluator_episode=5,
stop_value=195,
replay_path='cartpole_dqn_seed0/video',
),
policy=dict(
cuda=False,
load_path='cartpole_dqn_seed0/ckpt/ckpt_best.pth.tar', # necessary for eval
model=dict(
obs_shape=4,
action_shape=2,
encoder_hidden_size_list=[128, 128, 64],
dueling=True,
# dropout=0.1,
),
nstep=1,
discount_factor=0.97,
learn=dict(
update_per_collect=5,
batch_size=64,
learning_rate=0.001,
),
collect=dict(n_sample=8),
eval=dict(evaluator=dict(eval_freq=40, )),
other=dict(
eps=dict(
type='exp',
start=0.95,
end=0.1,
decay=10000,
),
replay_buffer=dict(replay_buffer_size=20000, ),
),
),
)
cartpole_dqn_config = EasyDict(cartpole_dqn_config)
main_config = cartpole_dqn_config
cartpole_dqn_create_config = dict(
env=dict(
type='cartpole',
import_names=['dizoo.classic_control.cartpole.envs.cartpole_env'],
),
env_manager=dict(type='base'),
policy=dict(type='dqn'),
replay_buffer=dict(type='deque', import_names=['ding.data.buffer.deque_buffer_wrapper']),
)
cartpole_dqn_create_config = EasyDict(cartpole_dqn_create_config)
create_config = cartpole_dqn_create_config
if __name__ == "__main__":
# or you can enter `ding -m serial -c cartpole_dqn_config.py -s 0`
from ding.entry import serial_pipeline
serial_pipeline((main_config, create_config), seed=0)
|