File size: 10,920 Bytes
079c32c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 |
from typing import Any
import time
from queue import Queue
from typing import Union, Tuple
from threading import Thread
from functools import partial
from ding.utils.autolog import LoggedValue, LoggedModel
from ding.utils import LockContext, LockContextType, remove_file
def generate_id(name, data_id: int) -> str:
"""
Overview:
Use ``self.name`` and input ``id`` to generate a unique id for next data to be inserted.
Arguments:
- data_id (:obj:`int`): Current unique id.
Returns:
- id (:obj:`str`): Id in format "BufferName_DataId".
"""
return "{}_{}".format(name, str(data_id))
class UsedDataRemover:
"""
Overview:
UsedDataRemover is a tool to remove file datas that will no longer be used anymore.
Interface:
start, close, add_used_data
"""
def __init__(self) -> None:
self._used_data = Queue()
self._delete_used_data_thread = Thread(target=self._delete_used_data, name='delete_used_data')
self._delete_used_data_thread.daemon = True
self._end_flag = True
def start(self) -> None:
"""
Overview:
Start the `delete_used_data` thread.
"""
self._end_flag = False
self._delete_used_data_thread.start()
def close(self) -> None:
"""
Overview:
Delete all datas in `self._used_data`. Then join the `delete_used_data` thread.
"""
while not self._used_data.empty():
data_id = self._used_data.get()
remove_file(data_id)
self._end_flag = True
def add_used_data(self, data: Any) -> None:
"""
Overview:
Delete all datas in `self._used_data`. Then join the `delete_used_data` thread.
Arguments:
- data (:obj:`Any`): Add a used data item into `self._used_data` for further remove.
"""
assert data is not None and isinstance(data, dict) and 'data_id' in data
self._used_data.put(data['data_id'])
def _delete_used_data(self) -> None:
while not self._end_flag:
if not self._used_data.empty():
data_id = self._used_data.get()
remove_file(data_id)
else:
time.sleep(0.001)
class SampledDataAttrMonitor(LoggedModel):
"""
Overview:
SampledDataAttrMonitor is to monitor read-out indicators for ``expire`` times recent read-outs.
Indicators include: read out time; average and max of read out data items' use; average, max and min of
read out data items' priorityl; average and max of staleness.
Interface:
__init__, fixed_time, current_time, freeze, unfreeze, register_attribute_value, __getattr__
Property:
time, expire
"""
use_max = LoggedValue(int)
use_avg = LoggedValue(float)
priority_max = LoggedValue(float)
priority_avg = LoggedValue(float)
priority_min = LoggedValue(float)
staleness_max = LoggedValue(int)
staleness_avg = LoggedValue(float)
def __init__(self, time_: 'BaseTime', expire: Union[int, float]): # noqa
LoggedModel.__init__(self, time_, expire)
self.__register()
def __register(self):
def __avg_func(prop_name: str) -> float:
records = self.range_values[prop_name]()
_list = [_value for (_begin_time, _end_time), _value in records]
return sum(_list) / len(_list) if len(_list) != 0 else 0
def __max_func(prop_name: str) -> Union[float, int]:
records = self.range_values[prop_name]()
_list = [_value for (_begin_time, _end_time), _value in records]
return max(_list) if len(_list) != 0 else 0
def __min_func(prop_name: str) -> Union[float, int]:
records = self.range_values[prop_name]()
_list = [_value for (_begin_time, _end_time), _value in records]
return min(_list) if len(_list) != 0 else 0
self.register_attribute_value('avg', 'use', partial(__avg_func, prop_name='use_avg'))
self.register_attribute_value('max', 'use', partial(__max_func, prop_name='use_max'))
self.register_attribute_value('avg', 'priority', partial(__avg_func, prop_name='priority_avg'))
self.register_attribute_value('max', 'priority', partial(__max_func, prop_name='priority_max'))
self.register_attribute_value('min', 'priority', partial(__min_func, prop_name='priority_min'))
self.register_attribute_value('avg', 'staleness', partial(__avg_func, prop_name='staleness_avg'))
self.register_attribute_value('max', 'staleness', partial(__max_func, prop_name='staleness_max'))
class PeriodicThruputMonitor:
"""
Overview:
PeriodicThruputMonitor is a tool to record and print logs(text & tensorboard) how many datas are
pushed/sampled/removed/valid in a period of time. For tensorboard, you can view it in 'buffer_{$NAME}_sec'.
Interface:
close
Property:
push_data_count, sample_data_count, remove_data_count, valid_count
.. note::
`thruput_log` thread is initialized and started in `__init__` method, so PeriodicThruputMonitor only provide
one signle interface `close`
"""
def __init__(self, name, cfg, logger, tb_logger) -> None:
self.name = name
self._end_flag = False
self._logger = logger
self._tb_logger = tb_logger
self._thruput_print_seconds = cfg.seconds
self._thruput_print_times = 0
self._thruput_start_time = time.time()
self._history_push_count = 0
self._history_sample_count = 0
self._remove_data_count = 0
self._valid_count = 0
self._thruput_log_thread = Thread(target=self._thrput_print_periodically, args=(), name='periodic_thruput_log')
self._thruput_log_thread.daemon = True
self._thruput_log_thread.start()
def _thrput_print_periodically(self) -> None:
while not self._end_flag:
time_passed = time.time() - self._thruput_start_time
if time_passed >= self._thruput_print_seconds:
self._logger.info('In the past {:.1f} seconds, buffer statistics is as follows:'.format(time_passed))
count_dict = {
'pushed_in': self._history_push_count,
'sampled_out': self._history_sample_count,
'removed': self._remove_data_count,
'current_have': self._valid_count,
}
self._logger.info(self._logger.get_tabulate_vars_hor(count_dict))
for k, v in count_dict.items():
self._tb_logger.add_scalar('{}_sec/'.format(self.name) + k, v, self._thruput_print_times)
self._history_push_count = 0
self._history_sample_count = 0
self._remove_data_count = 0
self._thruput_start_time = time.time()
self._thruput_print_times += 1
else:
time.sleep(min(1, self._thruput_print_seconds * 0.2))
def close(self) -> None:
"""
Overview:
Join the `thruput_log` thread by setting `self._end_flag` to `True`.
"""
self._end_flag = True
def __del__(self) -> None:
self.close()
@property
def push_data_count(self) -> int:
return self._history_push_count
@push_data_count.setter
def push_data_count(self, count) -> None:
self._history_push_count = count
@property
def sample_data_count(self) -> int:
return self._history_sample_count
@sample_data_count.setter
def sample_data_count(self, count) -> None:
self._history_sample_count = count
@property
def remove_data_count(self) -> int:
return self._remove_data_count
@remove_data_count.setter
def remove_data_count(self, count) -> None:
self._remove_data_count = count
@property
def valid_count(self) -> int:
return self._valid_count
@valid_count.setter
def valid_count(self, count) -> None:
self._valid_count = count
class ThruputController:
def __init__(self, cfg) -> None:
self._push_sample_rate_limit = cfg.push_sample_rate_limit
assert 'min' in self._push_sample_rate_limit and self._push_sample_rate_limit['min'] >= 0
assert 'max' in self._push_sample_rate_limit and self._push_sample_rate_limit['max'] <= float("inf")
window_seconds = cfg.window_seconds
self._decay_factor = 0.01 ** (1 / window_seconds)
self._push_lock = LockContext(type_=LockContextType.THREAD_LOCK)
self._sample_lock = LockContext(type_=LockContextType.THREAD_LOCK)
self._history_push_count = 0
self._history_sample_count = 0
self._end_flag = False
self._count_decay_thread = Thread(target=self._count_decay, name='count_decay')
self._count_decay_thread.daemon = True
self._count_decay_thread.start()
def _count_decay(self) -> None:
while not self._end_flag:
time.sleep(1)
with self._push_lock:
self._history_push_count *= self._decay_factor
with self._sample_lock:
self._history_sample_count *= self._decay_factor
def can_push(self, push_size: int) -> Tuple[bool, str]:
if abs(self._history_sample_count) < 1e-5:
return True, "Can push because `self._history_sample_count` < 1e-5"
rate = (self._history_push_count + push_size) / self._history_sample_count
if rate > self._push_sample_rate_limit['max']:
return False, "push({}+{}) / sample({}) > limit_max({})".format(
self._history_push_count, push_size, self._history_sample_count, self._push_sample_rate_limit['max']
)
return True, "Can push."
def can_sample(self, sample_size: int) -> Tuple[bool, str]:
rate = self._history_push_count / (self._history_sample_count + sample_size)
if rate < self._push_sample_rate_limit['min']:
return False, "push({}) / sample({}+{}) < limit_min({})".format(
self._history_push_count, self._history_sample_count, sample_size, self._push_sample_rate_limit['min']
)
return True, "Can sample."
def close(self) -> None:
self._end_flag = True
@property
def history_push_count(self) -> int:
return self._history_push_count
@history_push_count.setter
def history_push_count(self, count) -> None:
with self._push_lock:
self._history_push_count = count
@property
def history_sample_count(self) -> int:
return self._history_sample_count
@history_sample_count.setter
def history_sample_count(self, count) -> None:
with self._sample_lock:
self._history_sample_count = count
|