File size: 2,888 Bytes
079c32c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 |
from easydict import EasyDict
pong_dqfd_config = dict(
exp_name='pong_dqfd_seed0',
env=dict(
collector_env_num=8,
evaluator_env_num=8,
n_evaluator_episode=8,
stop_value=20,
env_id='PongNoFrameskip-v4',
#'ALE/Pong-v5' is available. But special setting is needed after gym make.
frame_stack=4,
),
policy=dict(
cuda=True,
priority=True,
model=dict(
obs_shape=[4, 84, 84],
action_shape=6,
encoder_hidden_size_list=[128, 128, 512],
),
nstep=3,
discount_factor=0.99,
learn=dict(
update_per_collect=10,
batch_size=32,
learning_rate=0.0001,
target_update_freq=500,
lambda1=1.0,
lambda2=1.0,
lambda3=1e-5,
per_train_iter_k=10,
expert_replay_buffer_size=10000,
# justify the buffer size of the expert buffer
),
collect=dict(
n_sample=64,
# Users should add their own model path here. Model path should lead to a model.
# Absolute path is recommended.
# In DI-engine, it is ``exp_name/ckpt/ckpt_best.pth.tar``.
model_path='model_path_placeholder',
# Cut trajectories into pieces with length "unroll_len".
unroll_len=1,
),
# Users should add their own path here (path should lead to a well-trained model)
# Absolute path is recommended
other=dict(
eps=dict(
type='exp',
start=1.,
end=0.05,
decay=250000,
),
replay_buffer=dict(replay_buffer_size=100000, ),
),
),
)
pong_dqfd_config = EasyDict(pong_dqfd_config)
main_config = pong_dqfd_config
pong_dqfd_create_config = dict(
env=dict(
type='atari',
import_names=['dizoo.atari.envs.atari_env'],
),
env_manager=dict(type='subprocess'),
policy=dict(type='dqfd'),
)
pong_dqfd_create_config = EasyDict(pong_dqfd_create_config)
create_config = pong_dqfd_create_config
if __name__ == '__main__':
# or you can enter `ding -m serial_dqfd -c pong_dqfd_config.py -s 0`
# then input ``pong_dqfd_config.py`` upon the instructions.
# The reason we need to input the dqfd config is we have to borrow its ``_get_train_sample`` function
# in the collector part even though the expert model may be generated from other Q learning algos.
from ding.entry.serial_entry_dqfd import serial_pipeline_dqfd
from dizoo.atari.config.serial.pong import pong_dqfd_config, pong_dqfd_create_config
expert_main_config = pong_dqfd_config
expert_create_config = pong_dqfd_create_config
serial_pipeline_dqfd((main_config, create_config), (expert_main_config, expert_create_config), seed=0)
|