File size: 2,594 Bytes
079c32c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 |
from copy import deepcopy
from ditk import logging
from ding.model import VAC
from ding.policy import PPOPolicy
from ding.envs import DingEnvWrapper, SubprocessEnvManagerV2
from ding.data import DequeBuffer
from ding.config import compile_config
from ding.framework import task, ding_init
from ding.framework.context import OnlineRLContext
from ding.framework.middleware import multistep_trainer, StepCollector, interaction_evaluator, CkptSaver, \
gae_estimator, ddp_termination_checker, online_logger
from ding.utils import set_pkg_seed, DistContext, get_rank, get_world_size
from dizoo.atari.envs.atari_env import AtariEnv
from dizoo.atari.config.serial.pong.pong_onppo_config import main_config, create_config
def main():
logging.getLogger().setLevel(logging.INFO)
with DistContext():
rank, world_size = get_rank(), get_world_size()
main_config.example = 'pong_ppo_seed0_ddp_avgsplit'
main_config.policy.multi_gpu = True
main_config.policy.learn.batch_size = main_config.policy.learn.batch_size // world_size
main_config.policy.collect.n_sample = main_config.policy.collect.n_sample // world_size
cfg = compile_config(main_config, create_cfg=create_config, auto=True)
ding_init(cfg)
with task.start(async_mode=False, ctx=OnlineRLContext()):
collector_cfg = deepcopy(cfg.env)
collector_cfg.is_train = True
evaluator_cfg = deepcopy(cfg.env)
evaluator_cfg.is_train = False
collector_env = SubprocessEnvManagerV2(
env_fn=[lambda: AtariEnv(collector_cfg) for _ in range(cfg.env.collector_env_num)], cfg=cfg.env.manager
)
evaluator_env = SubprocessEnvManagerV2(
env_fn=[lambda: AtariEnv(evaluator_cfg) for _ in range(cfg.env.evaluator_env_num)], cfg=cfg.env.manager
)
set_pkg_seed(cfg.seed, use_cuda=cfg.policy.cuda)
model = VAC(**cfg.policy.model)
policy = PPOPolicy(cfg.policy, model=model)
if rank == 0:
task.use(interaction_evaluator(cfg, policy.eval_mode, evaluator_env))
task.use(StepCollector(cfg, policy.collect_mode, collector_env))
task.use(gae_estimator(cfg, policy.collect_mode))
task.use(multistep_trainer(cfg, policy.learn_mode))
if rank == 0:
task.use(CkptSaver(policy, cfg.exp_name, train_freq=1000))
task.use(ddp_termination_checker(max_env_step=int(1e7), rank=rank))
task.run()
if __name__ == "__main__":
main()
|