File size: 23,724 Bytes
079c32c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 |
# Code Reference: https://github.com/OptMLGroup/DeepBeerInventory-RL.
import numpy as np
from random import randint
from .BGAgent import Agent
from matplotlib import rc
rc('text', usetex=True)
from .plotting import plotting, savePlot
import matplotlib.pyplot as plt
import os
import time
from time import gmtime, strftime
class clBeerGame(object):
def __init__(self, config):
self.config = config
self.curGame = 0 # The number associated with the current game (counter of the game)
self.curTime = 0
self.totIterPlayed = 0 # total iterations of the game, played so far in this and previous games
self.players = self.createAgent() # create the agents
self.T = 0
self.demand = []
self.ifOptimalSolExist = self.config.ifOptimalSolExist
self.getOptimalSol()
self.totRew = 0 # it is reward of all players obtained for the current player.
self.resultTest = []
self.runnerMidlResults = [] # stores the results to use in runner comparisons
self.runnerFinlResults = [] # stores the results to use in runner comparisons
self.middleTestResult = [
] # stores the whole middle results of bs, Strm, and random to avoid doing same tests multiple of times.
self.runNumber = 0 # the runNumber which is used when use runner
self.strNum = 0 # the runNumber which is used when use runner
# createAgent : Create agent objects (agentNum,IL,OO,c_h,c_p,type,config)
def createAgent(self):
agentTypes = self.config.agentTypes
return [
Agent(
i, self.config.ILInit[i], self.config.AOInit, self.config.ASInit[i], self.config.c_h[i],
self.config.c_p[i], self.config.eta[i], agentTypes[i], self.config
) for i in range(self.config.NoAgent)
]
# planHorizon : Find a random planning horizon
def planHorizon(self):
# TLow: minimum number for the planning horizon # TUp: maximum number for the planning horizon
# output: The planning horizon which is chosen randomly.
return randint(self.config.TLow, self.config.TUp)
# this function resets the game for start of the new game
def resetGame(self, demand: np.ndarray):
self.demand = demand
self.curTime = 0
self.curGame += 1
self.totIterPlayed += self.T
self.T = self.planHorizon()
# reset the required information of player for each episode
for k in range(0, self.config.NoAgent):
self.players[k].resetPlayer(self.T)
# update OO when there are initial IL,AO,AS
self.update_OO()
# correction on cost at time T according to the cost of the other players
def getTotRew(self):
totRew = 0
for i in range(self.config.NoAgent):
# sum all rewards for the agents and make correction
totRew += self.players[i].cumReward
for i in range(self.config.NoAgent):
self.players[i].curReward += self.players[i].eta * (totRew - self.players[i].cumReward) # /(self.T)
# make correction to the rewards in the experience replay for all iterations of current game
def distTotReward(self, role: int):
totRew = 0
optRew = 0.1 # why?
for i in range(self.config.NoAgent):
# sum all rewards for the agents and make correction
totRew += self.players[i].cumReward
totRew += optRew
return totRew, self.players[role].cumReward
def getAction(self, k: int, action: np.ndarray, playType="train"):
if playType == "train":
if self.players[k].compType == "srdqn":
self.players[k].action = np.zeros(self.config.actionListLen)
self.players[k].action[action] = 1
elif self.players[k].compType == "Strm":
self.players[k].action = np.zeros(self.config.actionListLenOpt)
self.players[k].action[np.argmin(np.abs(np.array(self.config.actionListOpt)\
- max(0, round(self.players[k].AO[self.curTime] + \
self.players[k].alpha_b*(self.players[k].IL - self.players[k].a_b) + \
self.players[k].betta_b*(self.players[k].OO - self.players[k].b_b)))))] = 1
elif self.players[k].compType == "rnd":
self.players[k].action = np.zeros(self.config.actionListLen)
a = np.random.randint(self.config.actionListLen)
self.players[k].action[a] = 1
elif self.players[k].compType == "bs":
self.players[k].action = np.zeros(self.config.actionListLenOpt)
if self.config.demandDistribution == 2:
if self.curTime and self.config.use_initial_BS <= 4:
self.players[k].action[np.argmin(np.abs(np.array(self.config.actionListOpt) - \
max(0, (self.players[k].int_bslBaseStock - (self.players[k].IL + self.players[k].OO - self.players[k].AO[self.curTime])))))] = 1
else:
self.players[k].action[np.argmin(np.abs(np.array(self.config.actionListOpt) - \
max(0, (self.players[k].bsBaseStock - (self.players[k].IL + self.players[k].OO - self.players[k].AO[self.curTime])))))] = 1
else:
self.players[k].action[np.argmin(np.abs(np.array(self.config.actionListOpt) - \
max(0, (self.players[k].bsBaseStock - (self.players[k].IL + self.players[k].OO - self.players[k].AO[self.curTime])))))] = 1
elif playType == "test":
if self.players[k].compTypeTest == "srdqn":
self.players[k].action = np.zeros(self.config.actionListLen)
self.players[k].action = self.players[k].brain.getDNNAction(self.playType)
elif self.players[k].compTypeTest == "Strm":
self.players[k].action = np.zeros(self.config.actionListLenOpt)
self.players[k].action[np.argmin(np.abs(np.array(self.config.actionListOpt)-\
max(0,round(self.players[k].AO[self.curTime] +\
self.players[k].alpha_b*(self.players[k].IL - self.players[k].a_b) +\
self.players[k].betta_b*(self.players[k].OO - self.players[k].b_b)))))] = 1
elif self.players[k].compTypeTest == "rnd":
self.players[k].action = np.zeros(self.config.actionListLen)
a = np.random.randint(self.config.actionListLen)
self.players[k].action[a] = 1
elif self.players[k].compTypeTest == "bs":
self.players[k].action = np.zeros(self.config.actionListLenOpt)
if self.config.demandDistribution == 2:
if self.curTime and self.config.use_initial_BS <= 4:
self.players[k].action [np.argmin(np.abs(np.array(self.config.actionListOpt)-\
max(0,(self.players[k].int_bslBaseStock - (self.players[k].IL + self.players[k].OO - self.players[k].AO[self.curTime]))) ))] = 1
else:
self.players[k].action [np.argmin(np.abs(np.array(self.config.actionListOpt)-\
max(0,(self.players[k].bsBaseStock - (self.players[k].IL + self.players[k].OO - self.players[k].AO[self.curTime]))) ))] = 1
else:
self.players[k].action [np.argmin(np.abs(np.array(self.config.actionListOpt)-\
max(0,(self.players[k].bsBaseStock - (self.players[k].IL + self.players[k].OO - self.players[k].AO[self.curTime]))) ))] = 1
else:
# not a valid player is defined.
raise Exception('The player type is not defined or it is not a valid type.!')
def next(self):
# get a random leadtime
leadTimeIn = randint(
self.config.leadRecItemLow[self.config.NoAgent - 1], self.config.leadRecItemUp[self.config.NoAgent - 1]
)
# handle the most upstream recieved shipment
self.players[self.config.NoAgent - 1].AS[self.curTime +
leadTimeIn] += self.players[self.config.NoAgent -
1].actionValue(self.curTime)
for k in range(self.config.NoAgent - 1, -1, -1): # [3,2,1,0]
# get current IL and Backorder
current_IL = max(0, self.players[k].IL)
current_backorder = max(0, -self.players[k].IL)
# TODO: We have get the AS and AO from the UI and update our AS and AO, so that code update the corresponding variables
# increase IL and decrease OO based on the action, for the next period
self.players[k].recieveItems(self.curTime)
# observe the reward
possible_shipment = min(
current_IL + self.players[k].AS[self.curTime], current_backorder + self.players[k].AO[self.curTime]
)
# plan arrivals of the items to the downstream agent
if self.players[k].agentNum > 0:
leadTimeIn = randint(self.config.leadRecItemLow[k - 1], self.config.leadRecItemUp[k - 1])
self.players[k - 1].AS[self.curTime + leadTimeIn] += possible_shipment
# update IL
self.players[k].IL -= self.players[k].AO[self.curTime]
# observe the reward
self.players[k].getReward()
self.players[k].hist[-1][-2] = self.players[k].curReward
self.players[k].hist2[-1][-2] = self.players[k].curReward
# update next observation
self.players[k].nextObservation = self.players[k].getCurState(self.curTime + 1)
if self.config.ifUseTotalReward:
# correction on cost at time T
if self.curTime == self.T:
self.getTotRew()
self.curTime += 1
def handelAction(self, action: np.ndarray, playType="train"):
# get random lead time
leadTime = randint(self.config.leadRecOrderLow[0], self.config.leadRecOrderUp[0])
# set AO
self.players[0].AO[self.curTime] += self.demand[self.curTime]
for k in range(0, self.config.NoAgent):
self.getAction(k, action, playType)
self.players[k].srdqnBaseStock += [self.players[k].actionValue( \
self.curTime) + self.players[k].IL + self.players[k].OO]
# update hist for the plots
self.players[k].hist += [[self.curTime, self.players[k].IL, self.players[k].OO,\
self.players[k].actionValue(self.curTime), self.players[k].curReward, self.players[k].srdqnBaseStock[-1]]]
if self.players[k].compType == "srdqn":
self.players[k].hist2 += [[self.curTime, self.players[k].IL, self.players[k].OO, self.players[k].AO[self.curTime], self.players[k].AS[self.curTime], \
self.players[k].actionValue(self.curTime), self.players[k].curReward, \
self.config.actionList[np.argmax(self.players[k].action)]]]
else:
self.players[k].hist2 += [[self.curTime, self.players[k].IL, self.players[k].OO, self.players[k].AO[self.curTime], self.players[k].AS[self.curTime], \
self.players[k].actionValue(self.curTime), self.players[k].curReward, 0]]
# updates OO and AO at time t+1
self.players[k].OO += self.players[k].actionValue(self.curTime) # open order level update
leadTime = randint(self.config.leadRecOrderLow[k], self.config.leadRecOrderUp[k])
if self.players[k].agentNum < self.config.NoAgent - 1:
self.players[k + 1].AO[self.curTime + leadTime] += self.players[k].actionValue(
self.curTime
) # open order level update
# check the Shang and Song (2003) condition, and if it works, obtains the base stock policy values for each agent
def getOptimalSol(self):
# if self.config.NoAgent !=1:
if self.config.NoAgent != 1 and 1 == 2:
# check the Shang and Song (2003) condition.
for k in range(self.config.NoAgent - 1):
if not (self.players[k].c_h == self.players[k + 1].c_h and self.players[k + 1].c_p == 0):
self.ifOptimalSolExist = False
# if the Shang and Song (2003) condition satisfied, it runs the algorithm
if self.ifOptimalSolExist == True:
calculations = np.zeros((7, self.config.NoAgent))
for k in range(self.config.NoAgent):
# DL_high
calculations[0][k] = ((self.config.leadRecItemLow + self.config.leadRecItemUp + 2) / 2 \
+ (self.config.leadRecOrderLow + self.config.leadRecOrderUp + 2) / 2) * \
(self.config.demandUp - self.config.demandLow - 1)
if k > 0:
calculations[0][k] += calculations[0][k - 1]
# probability_high
nominator_ch = 0
low_denominator_ch = 0
for j in range(k, self.config.NoAgent):
if j < self.config.NoAgent - 1:
nominator_ch += self.players[j + 1].c_h
low_denominator_ch += self.players[j].c_h
if k == 0:
high_denominator_ch = low_denominator_ch
calculations[2][k] = (self.players[0].c_p +
nominator_ch) / (self.players[0].c_p + low_denominator_ch + 0.0)
# probability_low
calculations[3][k] = (self.players[0].c_p +
nominator_ch) / (self.players[0].c_p + high_denominator_ch + 0.0)
# S_high
calculations[4] = np.round(np.multiply(calculations[0], calculations[2]))
# S_low
calculations[5] = np.round(np.multiply(calculations[0], calculations[3]))
# S_avg
calculations[6] = np.round(np.mean(calculations[4:6], axis=0))
# S', set the base stock values into each agent.
for k in range(self.config.NoAgent):
if k == 0:
self.players[k].bsBaseStock = calculations[6][k]
else:
self.players[k].bsBaseStock = calculations[6][k] - calculations[6][k - 1]
if self.players[k].bsBaseStock < 0:
self.players[k].bsBaseStock = 0
elif self.config.NoAgent == 1:
if self.config.demandDistribution == 0:
self.players[0].bsBaseStock = np.ceil(
self.config.c_h[0] / (self.config.c_h[0] + self.config.c_p[0] + 0.0)
) * ((self.config.demandUp - self.config.demandLow - 1) / 2) * self.config.leadRecItemUp
elif 1 == 1:
f = self.config.f
f_init = self.config.f_init
for k in range(self.config.NoAgent):
self.players[k].bsBaseStock = f[k]
self.players[k].int_bslBaseStock = f_init[k]
def update_OO(self):
for k in range(0, self.config.NoAgent):
if k < self.config.NoAgent - 1:
self.players[k].OO = sum(self.players[k + 1].AO) + sum(self.players[k].AS)
else:
self.players[k].OO = sum(self.players[k].AS)
def doTestMid(self, demandTs):
self.resultTest = []
m = strftime("%Y-%m-%d-%H-%M-%S", gmtime())
self.doTest(m, demandTs)
print("---------------------------------------------------------------------------------------")
resultSummary = np.array(self.resultTest).mean(axis=0).tolist()
result_srdqn = ', '.join(map("{:.2f}".format, resultSummary[0]))
result_rand = ', '.join(map("{:.2f}".format, resultSummary[1]))
result_strm = ', '.join(map("{:.2f}".format, resultSummary[2]))
if self.ifOptimalSolExist:
result_bs = ', '.join(map("{:.2f}".format, resultSummary[3]))
print(
'SUMMARY; {0:s}; ITER= {1:d}; OURPOLICY= [{2:s}]; SUM = {3:2.4f}; Rand= [{4:s}]; SUM = {5:2.4f}; STRM= [{6:s}]; SUM = {7:2.4f}; BS= [{8:s}]; SUM = {9:2.4f}'
.format(
strftime("%Y-%m-%d %H:%M:%S", gmtime()), self.curGame, result_srdqn, sum(resultSummary[0]),
result_rand, sum(resultSummary[1]), result_strm, sum(resultSummary[2]), result_bs,
sum(resultSummary[3])
)
)
else:
print(
'SUMMARY; {0:s}; ITER= {1:d}; OURPOLICY= [{2:s}]; SUM = {3:2.4f}; Rand= [{4:s}]; SUM = {5:2.4f}; STRM= [{6:s}]; SUM = {7:2.4f}'
.format(
strftime("%Y-%m-%d %H:%M:%S", gmtime()), self.curGame, result_srdqn, sum(resultSummary[0]),
result_rand, sum(resultSummary[1]), result_strm, sum(resultSummary[2])
)
)
print("=======================================================================================")
def doTest(self, m, demand):
import matplotlib.pyplot as plt
if self.config.ifSaveFigure:
plt.figure(self.curGame, figsize=(12, 8), dpi=80, facecolor='w', edgecolor='k')
# self.demand = demand
# use dnn to get output.
Rsltdnn, plt = self.tester(self.config.agentTypes, plt, 'b', 'OurPolicy', m)
baseStockdata = self.players[0].srdqnBaseStock
# # use random to get output.
RsltRnd, plt = self.tester(["rnd", "rnd", "rnd", "rnd"], plt, 'y', 'RAND', m)
# use formual to get output.
RsltStrm, plt = self.tester(["Strm", "Strm", "Strm", "Strm"], plt, 'g', 'Strm', m)
# use optimal strategy to get output, if it works.
if self.ifOptimalSolExist:
if self.config.agentTypes == ["srdqn", "Strm", "Strm", "Strm"]:
Rsltbs, plt = self.tester(["bs", "Strm", "Strm", "Strm"], plt, 'r', 'Strm-BS', m)
elif self.config.agentTypes == ["Strm", "srdqn", "Strm", "Strm"]:
Rsltbs, plt = self.tester(["Strm", "bs", "Strm", "Strm"], plt, 'r', 'Strm-BS', m)
elif self.config.agentTypes == ["Strm", "Strm", "srdqn", "Strm"]:
Rsltbs, plt = self.tester(["Strm", "Strm", "bs", "Strm"], plt, 'r', 'Strm-BS', m)
elif self.config.agentTypes == ["Strm", "Strm", "Strm", "srdqn"]:
Rsltbs, plt = self.tester(["Strm", "Strm", "Strm", "bs"], plt, 'r', 'Strm-BS', m)
elif self.config.agentTypes == ["srdqn", "rnd", "rnd", "rnd"]:
Rsltbs, plt = self.tester(["bs", "rnd", "rnd", "rnd"], plt, 'r', 'RND-BS', m)
elif self.config.agentTypes == ["rnd", "srdqn", "rnd", "rnd"]:
Rsltbs, plt = self.tester(["rnd", "bs", "rnd", "rnd"], plt, 'r', 'RND-BS', m)
elif self.config.agentTypes == ["rnd", "rnd", "srdqn", "rnd"]:
Rsltbs, plt = self.tester(["rnd", "rnd", "bs", "rnd"], plt, 'r', 'RND-BS', m)
elif self.config.agentTypes == ["rnd", "rnd", "rnd", "srdqn"]:
Rsltbs, plt = self.tester(["rnd", "rnd", "rnd", "bs"], plt, 'r', 'RND-BS', m)
else:
Rsltbs, plt = self.tester(["bs", "bs", "bs", "bs"], plt, 'r', 'BS', m)
# hold the results of the optimal solution
self.middleTestResult += [[RsltRnd, RsltStrm, Rsltbs]]
else:
self.middleTestResult += [[RsltRnd, RsltStrm]]
else:
# return the obtained results into their lists
RsltRnd = self.middleTestResult[m][0]
RsltStrm = self.middleTestResult[m][1]
if self.ifOptimalSolExist:
Rsltbs = self.middleTestResult[m][2]
# save the figure
if self.config.ifSaveFigure:
savePlot(self.players, self.curGame, Rsltdnn, RsltStrm, Rsltbs, RsltRnd, self.config, m)
plt.close()
result_srdqn = ', '.join(map("{:.2f}".format, Rsltdnn))
result_rand = ', '.join(map("{:.2f}".format, RsltRnd))
result_strm = ', '.join(map("{:.2f}".format, RsltStrm))
if self.ifOptimalSolExist:
result_bs = ', '.join(map("{:.2f}".format, Rsltbs))
print(
'output; {0:s}; Iter= {1:s}; SRDQN= [{2:s}]; sum = {3:2.4f}; Rand= [{4:s}]; sum = {5:2.4f}; Strm= [{6:s}]; sum = {7:2.4f}; BS= [{8:s}]; sum = {9:2.4f}'
.format(
strftime("%Y-%m-%d %H:%M:%S", gmtime()), str(str(self.curGame) + "-" + str(m)), result_srdqn,
sum(Rsltdnn), result_rand, sum(RsltRnd), result_strm, sum(RsltStrm), result_bs, sum(Rsltbs)
)
)
self.resultTest += [[Rsltdnn, RsltRnd, RsltStrm, Rsltbs]]
else:
print(
'output; {0:s}; Iter= {1:s}; SRDQN= [{2:s}]; sum = {3:2.4f}; Rand= [{4:s}]; sum = {5:2.4f}; Strm= [{6:s}]; sum = {7:2.4f}'
.format(
strftime("%Y-%m-%d %H:%M:%S", gmtime()), str(str(self.curGame) + "-" + str(m)), result_srdqn,
sum(Rsltdnn), result_rand, sum(RsltRnd), result_strm, sum(RsltStrm)
)
)
self.resultTest += [[Rsltdnn, RsltRnd, RsltStrm]]
return sum(Rsltdnn)
def tester(self, testType, plt, colori, labeli, m):
# set computation type for test
for k in range(0, self.config.NoAgent):
# self.players[k].compTypeTest = testType[k]
self.players[k].compType = testType[k]
# run the episode to get the results.
if labeli != 'OurPolicy':
result = self.playGame(self.demand)
else:
result = [-1 * self.players[i].cumReward for i in range(0, self.config.NoAgent)]
# add the results into the figure
if self.config.ifSaveFigure:
plt = plotting(plt, [np.array(self.players[i].hist) for i in range(0, self.config.NoAgent)], colori, labeli)
if self.config.ifsaveHistInterval and ((self.curGame == 0) or (self.curGame == 1) or (self.curGame == 2) or (self.curGame == 3) or ((self.curGame - 1) % self.config.saveHistInterval == 0)\
or ((self.curGame) % self.config.saveHistInterval == 0) or ((self.curGame) % self.config.saveHistInterval == 1) \
or ((self.curGame) % self.config.saveHistInterval == 2)) :
for k in range(0, self.config.NoAgent):
name = labeli + "-" + str(self.curGame) + "-" + "player" + "-" + str(k) + "-" + str(m)
np.save(os.path.join(self.config.model_dir, name), np.array(self.players[k].hist2))
# save the figure of base stocks
# if self.config.ifSaveFigure and (self.curGame in range(self.config.saveFigInt[0],self.config.saveFigInt[1])):
# for k in range(self.config.NoAgent):
# if self.players[k].compTypeTest == 'dnn':
# plotBaseStock(self.players[k].srdqnBaseStock, 'b', 'base stock of agent '+ str(self.players[k].agentNum), self.curGame, self.config, m)
return result, plt
def playGame(self, demand):
self.resetGame(demand)
# run the game
while self.curTime < self.T:
self.handelAction(np.array(0)) # action won't be used.
self.next()
return [-1 * self.players[i].cumReward for i in range(0, self.config.NoAgent)]
|