File size: 3,752 Bytes
079c32c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
from typing import Any, List, Union, Optional
import time
import copy
import gym
import numpy as np
from ding.envs import BaseEnv, BaseEnvTimestep
from ding.torch_utils import to_ndarray, to_list
from ding.utils import ENV_REGISTRY

import bsuite
from bsuite.utils import gym_wrapper
from bsuite import sweep


@ENV_REGISTRY.register('bsuite')
class BSuiteEnv(BaseEnv):

    def __init__(self, cfg: dict) -> None:
        self._cfg = cfg
        self._init_flag = False
        self.env_id = cfg.env_id
        self.env_name = self.env_id.split('/')[0]

    def reset(self) -> np.ndarray:
        if not self._init_flag:
            raw_env = bsuite.load_from_id(bsuite_id=self.env_id)
            self._env = gym_wrapper.GymFromDMEnv(raw_env)
            self._observation_space = self._env.observation_space
            self._action_space = self._env.action_space
            self._reward_space = gym.spaces.Box(
                low=self._env.reward_range[0], high=self._env.reward_range[1], shape=(1, ), dtype=np.float64
            )
            self._init_flag = True
        if hasattr(self, '_seed') and hasattr(self, '_dynamic_seed') and self._dynamic_seed:
            np_seed = 100 * np.random.randint(1, 1000)
            self._env.seed(self._seed + np_seed)
        elif hasattr(self, '_seed'):
            self._env.seed(self._seed)
        self._eval_episode_return = 0
        obs = self._env.reset()
        if obs.shape[0] == 1:
            obs = obs[0]
        obs = to_ndarray(obs).astype(np.float32)
        return obs

    def close(self) -> None:
        if self._init_flag:
            self._env.close()
        self._init_flag = False

    def seed(self, seed: int, dynamic_seed: bool = True) -> None:
        self._seed = seed
        self._dynamic_seed = dynamic_seed
        np.random.seed(self._seed)

    def step(self, action: np.ndarray) -> BaseEnvTimestep:
        assert isinstance(action, np.ndarray), type(action)
        if action.shape[0] == 1:
            action = action[0]
        obs, rew, done, info = self._env.step(action)
        self._eval_episode_return += rew
        if done:
            info['eval_episode_return'] = self._eval_episode_return
        if obs.shape[0] == 1:
            obs = obs[0]
        obs = to_ndarray(obs)
        rew = to_ndarray([rew])  # wrapped to be transfered to a array with shape (1,)
        return BaseEnvTimestep(obs, rew, done, info)

    def config_info(self) -> dict:
        config_info = sweep.SETTINGS[self.env_id]  # additional info that are specific to each env configuration
        config_info['num_episodes'] = self._env.bsuite_num_episodes
        return config_info

    def random_action(self) -> np.ndarray:
        random_action = self.action_space.sample()
        random_action = to_ndarray([random_action], dtype=np.int64)
        return random_action

    @property
    def observation_space(self) -> gym.spaces.Space:
        return self._observation_space

    @property
    def action_space(self) -> gym.spaces.Space:
        return self._action_space

    @property
    def reward_space(self) -> gym.spaces.Space:
        return self._reward_space

    def __repr__(self) -> str:
        return "DI-engine BSuite Env({})".format(self.env_id)

    @staticmethod
    def create_collector_env_cfg(cfg: dict) -> List[dict]:
        collector_env_num = cfg.pop('collector_env_num')
        cfg = copy.deepcopy(cfg)
        cfg.is_train = True
        return [cfg for _ in range(collector_env_num)]

    @staticmethod
    def create_evaluator_env_cfg(cfg: dict) -> List[dict]:
        evaluator_env_num = cfg.pop('evaluator_env_num')
        cfg = copy.deepcopy(cfg)
        cfg.is_train = False
        return [cfg for _ in range(evaluator_env_num)]