File size: 3,962 Bytes
079c32c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
import copy
from typing import List, Union, Optional

import gym
import numpy as np
from easydict import EasyDict

from ding.envs.env.base_env import BaseEnv, BaseEnvTimestep
from ding.torch_utils import to_ndarray
from ding.utils import ENV_REGISTRY


@ENV_REGISTRY.register('cliffwalking')
class CliffWalkingEnv(BaseEnv):

    def __init__(self, cfg: dict) -> None:
        self._cfg = EasyDict(
            env_id='CliffWalking',
            render_mode='rgb_array',
            max_episode_steps=300,  # default max trajectory length to truncate possible infinite attempts
        )
        self._cfg.update(cfg)
        self._init_flag = False
        self._replay_path = None
        self._observation_space = gym.spaces.Box(low=0, high=1, shape=(48, ), dtype=np.float32)
        self._env = gym.make(
                "CliffWalking", render_mode=self._cfg.render_mode, max_episode_steps=self._cfg.max_episode_steps
            )
        self._action_space = self._env.action_space
        self._reward_space = gym.spaces.Box(
            low=self._env.reward_range[0], high=self._env.reward_range[1], shape=(1, ), dtype=np.float32
        )

    def reset(self) -> np.ndarray:
        if not self._init_flag:
            self._env = gym.make(
                "CliffWalking", render_mode=self._cfg.render_mode, max_episode_steps=self._cfg.max_episode_steps
            )
            self._init_flag = True
        if hasattr(self, '_seed') and hasattr(self, '_dynamic_seed') and self._dynamic_seed:
            dy_seed = self._seed + 100 * np.random.randint(1, 1000)
            self._env.seed(dy_seed)
        elif hasattr(self, '_seed'):
            self._env.seed(self._seed)
        if self._replay_path is not None:
            self._env = gym.wrappers.RecordVideo(
                self._env,
                video_folder=self._replay_path,
                episode_trigger=lambda episode_id: True,
                name_prefix='cliffwalking-{}'.format(id(self))
            )
        obs = self._env.reset()
        obs_encode = self._encode_obs(obs)
        self._eval_episode_return = 0.
        return obs_encode

    def close(self) -> None:
        try:
            self._env.close()
            del self._env
        except:
            pass

    def seed(self, seed: int, dynamic_seed: bool = True) -> None:
        self._seed = seed
        self._dynamic_seed = dynamic_seed
        np.random.seed(seed)

    def step(self, action: Union[int, np.ndarray]) -> BaseEnvTimestep:
        if isinstance(action, np.ndarray):
            if action.shape == (1, ):
                action = action.squeeze()  # 0-dim array
            action = action.item()
        obs, reward, done, info = self._env.step(action)
        obs_encode = self._encode_obs(obs)
        self._eval_episode_return += reward
        reward = to_ndarray([reward], dtype=np.float32)
        if done:
            info['eval_episode_return'] = self._eval_episode_return
        return BaseEnvTimestep(obs_encode, reward, done, info)

    def enable_save_replay(self, replay_path: Optional[str] = None) -> None:
        if replay_path is None:
            replay_path = './video'
        self._replay_path = replay_path

    def random_action(self) -> np.ndarray:
        random_action = self.action_space.sample()
        if isinstance(random_action, int):
            random_action = to_ndarray([random_action], dtype=np.int64)
        return random_action

    def _encode_obs(self, obs) -> np.ndarray:
        onehot = np.zeros(48, dtype=np.float32)
        onehot[int(obs)] = 1
        return onehot

    @property
    def observation_space(self) -> gym.spaces.Space:
        return self._observation_space

    @property
    def action_space(self) -> gym.spaces.Space:
        return self._action_space

    @property
    def reward_space(self) -> gym.spaces.Space:
        return self._reward_space

    def __repr__(self) -> str:
        return "DI-engine CliffWalking Env"