File size: 15,162 Bytes
079c32c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 |
from typing import List, Dict, Any, Tuple, Union, Optional
from collections import namedtuple, deque
import torch
import copy
from ding.torch_utils import Adam, to_device
from ding.rl_utils import ppo_data, ppo_error, ppo_policy_error, ppo_policy_data, get_gae_with_default_last_value, \
v_nstep_td_data, v_nstep_td_error, get_nstep_return_data, get_train_sample
from ding.model import model_wrap
from ding.utils import POLICY_REGISTRY, deep_merge_dicts
from ding.utils.data import default_collate, default_decollate
from ding.policy.base_policy import Policy
from ding.policy.common_utils import default_preprocess_learn
from ding.policy.command_mode_policy_instance import DummyCommandModePolicy
@POLICY_REGISTRY.register('ppo_lstm')
class PPOPolicy(Policy):
r"""
Overview:
Policy class of PPO algorithm.
"""
config = dict(
# (str) RL policy register name (refer to function "POLICY_REGISTRY").
type='ppo_lstm',
# (bool) Whether to use cuda for network.
cuda=False,
# (bool) Whether the RL algorithm is on-policy or off-policy. (Note: in practice PPO can be off-policy used)
on_policy=True,
# (bool) Whether to use priority(priority sample, IS weight, update priority)
priority=False,
# (bool) Whether use Importance Sampling Weight to correct biased update. If True, priority must be True.
priority_IS_weight=False,
# (bool) Whether to use nstep_return for value loss
nstep_return=False,
nstep=3,
learn=dict(
# How many updates(iterations) to train after collector's one collection.
# Bigger "update_per_collect" means bigger off-policy.
# collect data -> update policy-> collect data -> ...
update_per_collect=5,
batch_size=64,
learning_rate=0.001,
# ==============================================================
# The following configs is algorithm-specific
# ==============================================================
# (float) The loss weight of value network, policy network weight is set to 1
value_weight=0.5,
# (float) The loss weight of entropy regularization, policy network weight is set to 1
entropy_weight=0.01,
# (float) PPO clip ratio, defaults to 0.2
clip_ratio=0.2,
# (bool) Whether to use advantage norm in a whole training batch
adv_norm=False,
ignore_done=False,
),
collect=dict(
# (int) Only one of [n_sample, n_episode] shoule be set
# n_sample=64,
# (int) Cut trajectories into pieces with length "unroll_len".
unroll_len=1,
# ==============================================================
# The following configs is algorithm-specific
# ==============================================================
# (float) Reward's future discount factor, aka. gamma.
discount_factor=0.99,
# (float) GAE lambda factor for the balance of bias and variance(1-step td and mc)
gae_lambda=0.95,
),
eval=dict(),
# Although ppo is an on-policy algorithm, ding reuses the buffer mechanism, and clear buffer after update.
# Note replay_buffer_size must be greater than n_sample.
other=dict(replay_buffer=dict(replay_buffer_size=1000, ), ),
)
def _init_learn(self) -> None:
r"""
Overview:
Learn mode init method. Called by ``self.__init__``.
Init the optimizer, algorithm config and the main model.
"""
self._priority = self._cfg.priority
self._priority_IS_weight = self._cfg.priority_IS_weight
assert not self._priority and not self._priority_IS_weight, "Priority is not implemented in PPO"
# Orthogonal init
for m in self._model.modules():
if isinstance(m, torch.nn.Conv2d):
torch.nn.init.orthogonal_(m.weight)
if isinstance(m, torch.nn.Linear):
torch.nn.init.orthogonal_(m.weight)
# Optimizer
self._optimizer = Adam(self._model.parameters(), lr=self._cfg.learn.learning_rate)
self._learn_model = model_wrap(self._model, wrapper_name='base')
# self._learn_model = model_wrap(self._learn_model, wrapper_name='hidden_state', state_num=self._cfg.learn.batch_size)
# Algorithm config
self._value_weight = self._cfg.learn.value_weight
self._entropy_weight = self._cfg.learn.entropy_weight
self._clip_ratio = self._cfg.learn.clip_ratio
self._adv_norm = self._cfg.learn.adv_norm
self._nstep = self._cfg.nstep
self._nstep_return = self._cfg.nstep_return
# Main model
self._learn_model.reset()
def _forward_learn(self, data: dict) -> Dict[str, Any]:
r"""
Overview:
Forward and backward function of learn mode.
Arguments:
- data (:obj:`dict`): Dict type data
Returns:
- info_dict (:obj:`Dict[str, Any]`):
Including current lr, total_loss, policy_loss, value_loss, entropy_loss, \
adv_abs_max, approx_kl, clipfrac
"""
data = default_preprocess_learn(data, ignore_done=self._cfg.learn.ignore_done, use_nstep=self._nstep_return)
if self._cuda:
data = to_device(data, self._device)
# ====================
# PPO forward
# ====================
self._learn_model.train()
# normal ppo
if not self._nstep_return:
output = self._learn_model.forward(data['obs'])
adv = data['adv']
if self._adv_norm:
# Normalize advantage in a total train_batch
adv = (adv - adv.mean()) / (adv.std() + 1e-8)
return_ = data['value'] + adv
# Calculate ppo error
ppodata = ppo_data(
output['logit'], data['logit'], data['action'], output['value'], data['value'], adv, return_,
data['weight']
)
ppo_loss, ppo_info = ppo_error(ppodata, self._clip_ratio)
wv, we = self._value_weight, self._entropy_weight
total_loss = ppo_loss.policy_loss + wv * ppo_loss.value_loss - we * ppo_loss.entropy_loss
else:
output = self._learn_model.forward(data['obs'])
adv = data['adv']
if self._adv_norm:
# Normalize advantage in a total train_batch
adv = (adv - adv.mean()) / (adv.std() + 1e-8)
# Calculate ppo error
ppodata = ppo_policy_data(output['logit'], data['logit'], data['action'], adv, data['weight'])
ppo_policy_loss, ppo_info = ppo_policy_error(ppodata, self._clip_ratio)
wv, we = self._value_weight, self._entropy_weight
next_obs = data.get('next_obs')
value_gamma = data.get('value_gamma')
reward = data.get('reward')
# current value
value = self._learn_model.forward(data['obs'])
# target value
next_data = {'obs': next_obs}
target_value = self._learn_model.forward(next_data['obs'])
# TODO what should we do here to keep shape
assert self._nstep > 1
td_data = v_nstep_td_data(
value['value'], target_value['value'], reward.t(), data['done'], data['weight'], value_gamma
)
#calculate v_nstep_td critic_loss
critic_loss, td_error_per_sample = v_nstep_td_error(td_data, self._gamma, self._nstep)
ppo_loss_data = namedtuple('ppo_loss', ['policy_loss', 'value_loss', 'entropy_loss'])
ppo_loss = ppo_loss_data(ppo_policy_loss.policy_loss, critic_loss, ppo_policy_loss.entropy_loss)
total_loss = ppo_policy_loss.policy_loss + wv * critic_loss - we * ppo_policy_loss.entropy_loss
# ====================
# PPO update
# ====================
self._optimizer.zero_grad()
total_loss.backward()
self._optimizer.step()
return {
'cur_lr': self._optimizer.defaults['lr'],
'total_loss': total_loss.item(),
'policy_loss': ppo_loss.policy_loss.item(),
'value_loss': ppo_loss.value_loss.item(),
'entropy_loss': ppo_loss.entropy_loss.item(),
'adv_abs_max': adv.abs().max().item(),
'approx_kl': ppo_info.approx_kl,
'clipfrac': ppo_info.clipfrac,
}
def _state_dict_learn(self) -> Dict[str, Any]:
return {
'model': self._learn_model.state_dict(),
'optimizer': self._optimizer.state_dict(),
}
def _load_state_dict_learn(self, state_dict: Dict[str, Any]) -> None:
self._learn_model.load_state_dict(state_dict['model'])
self._optimizer.load_state_dict(state_dict['optimizer'])
def _init_collect(self) -> None:
r"""
Overview:
Collect mode init method. Called by ``self.__init__``.
Init traj and unroll length, collect model.
"""
self._unroll_len = self._cfg.collect.unroll_len
self._collect_model = model_wrap(self._model, wrapper_name='multinomial_sample')
# self._collect_model = model_wrap(
# self._collect_model, wrapper_name='hidden_state', state_num=self._cfg.collect.env_num, save_prev_state=True
# )
self._collect_model.reset()
self._gamma = self._cfg.collect.discount_factor
self._gae_lambda = self._cfg.collect.gae_lambda
self._nstep = self._cfg.nstep
self._nstep_return = self._cfg.nstep_return
def _forward_collect(self, data: dict) -> dict:
r"""
Overview:
Forward function of collect mode.
Arguments:
- data (:obj:`Dict[str, Any]`): Dict type data, stacked env data for predicting policy_output(action), \
values are torch.Tensor or np.ndarray or dict/list combinations, keys are env_id indicated by integer.
Returns:
- output (:obj:`Dict[int, Any]`): Dict type data, including at least inferred action according to input obs.
ReturnsKeys
- necessary: ``action``
"""
data_id = list(data.keys())
data = default_collate(list(data.values()))
if self._cuda:
data = to_device(data, self._device)
self._collect_model.eval()
with torch.no_grad():
output = self._collect_model.forward(data)
if self._cuda:
output = to_device(output, 'cpu')
output = default_decollate(output)
return {i: d for i, d in zip(data_id, output)}
def _process_transition(self, obs: Any, model_output: dict, timestep: namedtuple) -> dict:
"""
Overview:
Generate dict type transition data from inputs.
Arguments:
- obs (:obj:`Any`): Env observation
- model_output (:obj:`dict`): Output of collect model, including at least ['action']
- timestep (:obj:`namedtuple`): Output after env step, including at least ['obs', 'reward', 'done']\
(here 'obs' indicates obs after env step).
Returns:
- transition (:obj:`dict`): Dict type transition data.
"""
if not self._nstep_return:
transition = {
'obs': obs,
'logit': model_output['logit'],
'action': model_output['action'],
'value': model_output['value'],
'prev_state': model_output['prev_state'],
'reward': timestep.reward,
'done': timestep.done,
}
else:
transition = {
'obs': obs,
'next_obs': timestep.obs,
'logit': model_output['logit'],
'action': model_output['action'],
'prev_state': model_output['prev_state'],
'value': model_output['value'],
'reward': timestep.reward,
'done': timestep.done,
}
return transition
def _get_train_sample(self, data: deque) -> Union[None, List[Any]]:
r"""
Overview:
Get the trajectory and calculate GAE, return one data to cache for next time calculation
Arguments:
- data (:obj:`deque`): The trajectory's cache
Returns:
- samples (:obj:`dict`): The training samples generated
"""
data = get_gae_with_default_last_value(
data,
data[-1]['done'],
gamma=self._gamma,
gae_lambda=self._gae_lambda,
cuda=self._cuda,
)
if not self._nstep_return:
return get_train_sample(data, self._unroll_len)
else:
return get_nstep_return_data(data, self._nstep)
def _init_eval(self) -> None:
r"""
Overview:
Evaluate mode init method. Called by ``self.__init__``.
Init eval model with argmax strategy.
"""
self._eval_model = model_wrap(self._model, wrapper_name='argmax_sample')
# self._eval_model = model_wrap(self._model, wrapper_name='hidden_state', state_num=self._cfg.eval.env_num)
self._eval_model.reset()
def _forward_eval(self, data: dict) -> dict:
r"""
Overview:
Forward function of eval mode, similar to ``self._forward_collect``.
Arguments:
- data (:obj:`Dict[str, Any]`): Dict type data, stacked env data for predicting policy_output(action), \
values are torch.Tensor or np.ndarray or dict/list combinations, keys are env_id indicated by integer.
Returns:
- output (:obj:`Dict[int, Any]`): The dict of predicting action for the interaction with env.
ReturnsKeys
- necessary: ``action``
"""
data_id = list(data.keys())
data = default_collate(list(data.values()))
if self._cuda:
data = to_device(data, self._device)
# data = {'obs': data}
self._eval_model.eval()
with torch.no_grad():
output = self._eval_model.forward(data[0])
if self._cuda:
output = to_device(output, 'cpu')
output = default_decollate(output)
return {i: d for i, d in zip(data_id, output)}
def _reset_eval(self, data_id: Optional[List[int]] = None) -> None:
self._eval_model.reset(data_id=data_id)
def default_model(self) -> Tuple[str, List[str]]:
return 'vac', ['ding.model.template.vac']
def _monitor_vars_learn(self) -> List[str]:
return super()._monitor_vars_learn() + [
'policy_loss', 'value_loss', 'entropy_loss', 'adv_abs_max', 'approx_kl', 'clipfrac'
]
@POLICY_REGISTRY.register('ppo_lstm_command')
class PPOCommandModePolicy(PPOPolicy, DummyCommandModePolicy):
pass
|