File size: 5,947 Bytes
079c32c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import copy
import os
from typing import Dict, Optional

import gym
import gym_hybrid
import matplotlib.pyplot as plt
import numpy as np
from easydict import EasyDict
from matplotlib import animation

from ding.envs import BaseEnv, BaseEnvTimestep
from ding.envs.common import affine_transform
from ding.torch_utils import to_ndarray
from ding.utils import ENV_REGISTRY


@ENV_REGISTRY.register('gym_hybrid')
class GymHybridEnv(BaseEnv):
    default_env_id = ['Sliding-v0', 'Moving-v0', 'HardMove-v0']

    @classmethod
    def default_config(cls: type) -> EasyDict:
        cfg = EasyDict(copy.deepcopy(cls.config))
        cfg.cfg_type = cls.__name__ + 'Dict'
        return cfg

    config = dict(
        env_id='Moving-v0',
        act_scale=True,
    )

    def __init__(self, cfg: EasyDict) -> None:
        self._cfg = cfg
        self._env_id = cfg.env_id
        assert self._env_id in self.default_env_id
        self._act_scale = cfg.act_scale
        self._replay_path = None
        self._save_replay = False
        self._save_replay_count = 0
        self._init_flag = False

    def reset(self) -> np.ndarray:
        if not self._init_flag:
            if self._env_id == 'HardMove-v0':
                self._env = gym.make(self._env_id, num_actuators=self._cfg.num_actuators)
            else:
                self._env = gym.make(self._env_id)
            self._observation_space = self._env.observation_space
            self._action_space = self._env.action_space
            self._reward_space = gym.spaces.Box(
                low=self._env.reward_range[0], high=self._env.reward_range[1], shape=(1, ), dtype=np.float32
            )
            self._init_flag = True
        if hasattr(self, '_seed') and hasattr(self, '_dynamic_seed') and self._dynamic_seed:
            np_seed = 100 * np.random.randint(1, 1000)
            self._env.seed(self._seed + np_seed)
        elif hasattr(self, '_seed'):
            self._env.seed(self._seed)
        self._eval_episode_return = 0
        obs = self._env.reset()
        obs = to_ndarray(obs).astype(np.float32)
        return obs

    def close(self) -> None:
        if self._init_flag:
            self._env.close()
        self._init_flag = False

    def seed(self, seed: int, dynamic_seed: bool = True) -> None:
        self._seed = seed
        self._dynamic_seed = dynamic_seed
        np.random.seed(self._seed)

    def step(self, action: Dict) -> BaseEnvTimestep:
        if self._act_scale:
            if self._env_id == 'HardMove-v0':
                action = [
                    action['action_type'], [affine_transform(i, min_val=-1, max_val=1) for i in action['action_args']]
                ]
            else:
                # acceleration_value.
                action['action_args'][0] = affine_transform(action['action_args'][0], min_val=0, max_val=1)
                # rotation_value. Following line can be omitted, because in the affine_transform function,
                # we have already done the clip(-1,1) operation
                action['action_args'][1] = affine_transform(action['action_args'][1], min_val=-1, max_val=1)
                action = [action['action_type'], action['action_args']]
        if self._save_replay:
            self._frames.append(self._env.render(mode='rgb_array'))
        obs, rew, done, info = self._env.step(action)

        obs = to_ndarray(obs)
        if isinstance(obs, list):  # corner case
            for i in range(len(obs)):
                if len(obs[i].shape) == 0:
                    obs[i] = np.array([obs[i]])
            obs = np.concatenate(obs)
        assert isinstance(obs, np.ndarray) and obs.shape == (10, )
        obs = obs.astype(np.float32)

        rew = to_ndarray([rew])  # wrapped to be transferred to a numpy array with shape (1,)
        if isinstance(rew, list):
            rew = rew[0]
        assert isinstance(rew, np.ndarray) and rew.shape == (1, )
        self._eval_episode_return += rew.item()
        if done:
            info['eval_episode_return'] = self._eval_episode_return
            if self._save_replay:
                if self._env_id == 'HardMove-v0':
                    self._env_id = f'hardmove_n{self._cfg.num_actuators}'
                path = os.path.join(
                    self._replay_path, '{}_episode_{}.gif'.format(self._env_id, self._save_replay_count)
                )
                self.display_frames_as_gif(self._frames, path)
                self._frames = []
                self._save_replay_count += 1
        info['action_args_mask'] = np.array([[1, 0], [0, 1], [0, 0]])
        return BaseEnvTimestep(obs, rew, done, info)

    def random_action(self) -> Dict:
        # action_type: 0, 1, 2
        # action_args:
        #   - acceleration_value: [0, 1]
        #   - rotation_value: [-1, 1]
        raw_action = self._action_space.sample()
        return {'action_type': raw_action[0], 'action_args': raw_action[1]}

    def __repr__(self) -> str:
        return "DI-engine gym hybrid Env"

    @property
    def observation_space(self) -> gym.spaces.Space:
        return self._observation_space

    @property
    def action_space(self) -> gym.spaces.Space:
        return self._action_space

    @property
    def reward_space(self) -> gym.spaces.Space:
        return self._reward_space

    def enable_save_replay(self, replay_path: Optional[str] = None) -> None:
        if replay_path is None:
            replay_path = './video'
        self._replay_path = replay_path
        self._save_replay = True
        self._save_replay_count = 0
        self._frames = []

    @staticmethod
    def display_frames_as_gif(frames: list, path: str) -> None:
        patch = plt.imshow(frames[0])
        plt.axis('off')

        def animate(i):
            patch.set_data(frames[i])

        anim = animation.FuncAnimation(plt.gcf(), animate, frames=len(frames), interval=5)
        anim.save(path, writer='imagemagick', fps=20)