File size: 3,204 Bytes
079c32c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 |
from easydict import EasyDict
collector_env_num = 8
evaluator_env_num = 5
minigrid_ppo_rnd_config = dict(
exp_name='minigrid_doorkey8x8_rnd_onppo_seed0',
env=dict(
collector_env_num=collector_env_num,
evaluator_env_num=evaluator_env_num,
n_evaluator_episode=evaluator_env_num,
# typical MiniGrid env id:
# {'MiniGrid-Empty-8x8-v0', 'MiniGrid-FourRooms-v0', 'MiniGrid-DoorKey-8x8-v0','MiniGrid-DoorKey-16x16-v0'},
# please refer to https://github.com/Farama-Foundation/MiniGrid for details.
env_id='MiniGrid-DoorKey-8x8-v0',
# env_id='MiniGrid-AKTDT-7x7-1-v0',
max_step=100,
stop_value=20, # run fixed env_steps
# stop_value=0.96,
),
reward_model=dict(
intrinsic_reward_type='add',
# intrinsic_reward_weight means the relative weight of RND intrinsic_reward.
# Specifically for sparse reward env MiniGrid, in this env,
# if reach goal, the agent get reward ~1, otherwise 0,
# We could set the intrinsic_reward_weight approximately equal to the inverse of max_episode_steps.
# Please refer to rnd_reward_model for details.
intrinsic_reward_weight=0.003, # 1/300
learning_rate=3e-4,
obs_shape=2835,
batch_size=320,
update_per_collect=50,
clear_buffer_per_iters=int(1e3),
obs_norm=False,
obs_norm_clamp_max=5,
obs_norm_clamp_min=-5,
extrinsic_reward_norm=True,
extrinsic_reward_norm_max=1,
),
policy=dict(
recompute_adv=True,
cuda=True,
action_space='discrete',
model=dict(
obs_shape=2835,
action_shape=7,
action_space='discrete',
encoder_hidden_size_list=[256, 128, 64, 64],
critic_head_hidden_size=64,
actor_head_hidden_size=64,
),
learn=dict(
epoch_per_collect=10,
update_per_collect=1,
batch_size=320,
learning_rate=3e-4,
value_weight=0.5,
entropy_weight=0.001,
clip_ratio=0.2,
adv_norm=True,
value_norm=True,
),
collect=dict(
collector_env_num=collector_env_num,
n_sample=3200,
unroll_len=1,
discount_factor=0.99,
gae_lambda=0.95,
),
eval=dict(evaluator=dict(eval_freq=1000, )),
),
)
minigrid_ppo_rnd_config = EasyDict(minigrid_ppo_rnd_config)
main_config = minigrid_ppo_rnd_config
minigrid_ppo_rnd_create_config = dict(
env=dict(
type='minigrid',
import_names=['dizoo.minigrid.envs.minigrid_env'],
),
env_manager=dict(type='subprocess'),
policy=dict(type='ppo'),
reward_model=dict(type='rnd'),
)
minigrid_ppo_rnd_create_config = EasyDict(minigrid_ppo_rnd_create_config)
create_config = minigrid_ppo_rnd_create_config
if __name__ == "__main__":
# or you can enter `ding -m serial -c minigrid_rnd_onppo_config.py -s 0`
from ding.entry import serial_pipeline_reward_model_onpolicy
serial_pipeline_reward_model_onpolicy([main_config, create_config], seed=0, max_env_step=int(10e6))
|