File size: 3,352 Bytes
079c32c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 |
from easydict import EasyDict
obs_shape = 111
act_shape = 8
ant_sac_gail_config = dict(
exp_name='ant_sac_gail_seed0',
env=dict(
env_id='Ant-v3',
norm_obs=dict(use_norm=False, ),
norm_reward=dict(use_norm=False, ),
collector_env_num=1,
evaluator_env_num=8,
n_evaluator_episode=8,
stop_value=6000,
),
reward_model=dict(
input_size=obs_shape + act_shape,
hidden_size=256,
batch_size=64,
learning_rate=1e-3,
update_per_collect=100,
# Users should add their own model path here. Model path should lead to a model.
# Absolute path is recommended.
# In DI-engine, it is ``exp_name/ckpt/ckpt_best.pth.tar``.
expert_model_path='model_path_placeholder',
# Path where to store the reward model
reward_model_path='data_path_placeholder+/reward_model/ckpt/ckpt_best.pth.tar',
# Users should add their own data path here. Data path should lead to a file to store data or load the stored data.
# Absolute path is recommended.
# In DI-engine, it is usually located in ``exp_name`` directory
data_path='data_path_placeholder',
collect_count=300000,
),
policy=dict(
cuda=True,
random_collect_size=25000,
model=dict(
obs_shape=obs_shape,
action_shape=act_shape,
twin_critic=True,
action_space='reparameterization',
actor_head_hidden_size=256,
critic_head_hidden_size=256,
),
learn=dict(
update_per_collect=1,
batch_size=256,
learning_rate_q=1e-3,
learning_rate_policy=1e-3,
learning_rate_alpha=3e-4,
ignore_done=False,
target_theta=0.005,
discount_factor=0.99,
alpha=0.2,
reparameterization=True,
auto_alpha=False,
),
collect=dict(
n_sample=64,
unroll_len=1,
),
command=dict(),
eval=dict(),
other=dict(replay_buffer=dict(replay_buffer_size=1000000, ), ),
),
)
ant_sac_gail_config = EasyDict(ant_sac_gail_config)
main_config = ant_sac_gail_config
ant_sac_gail_create_config = dict(
env=dict(
type='mujoco',
import_names=['dizoo.mujoco.envs.mujoco_env'],
),
env_manager=dict(type='subprocess'),
policy=dict(
type='sac',
import_names=['ding.policy.sac'],
),
replay_buffer=dict(type='naive', ),
reward_model=dict(type='gail'),
)
ant_sac_gail_create_config = EasyDict(ant_sac_gail_create_config)
create_config = ant_sac_gail_create_config
if __name__ == "__main__":
# or you can enter `ding -m serial_gail -c ant_gail_sac_config.py -s 0`
# then input the config you used to generate your expert model in the path mentioned above
# e.g. hopper_sac_config.py
from ding.entry import serial_pipeline_gail
from dizoo.mujoco.config.ant_sac_config import ant_sac_config, ant_sac_create_config
expert_main_config = ant_sac_config
expert_create_config = ant_sac_create_config
serial_pipeline_gail(
[main_config, create_config], [expert_main_config, expert_create_config],
max_env_step=10000000,
seed=0,
collect_data=True
)
|