File size: 2,750 Bytes
079c32c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 |
from easydict import EasyDict
halfcheetah_sqil_config = dict(
exp_name='halfcheetah_sqil_sac_seed0',
env=dict(
env_id='HalfCheetah-v3',
norm_obs=dict(use_norm=False, ),
norm_reward=dict(use_norm=False, ),
collector_env_num=1,
evaluator_env_num=8,
n_evaluator_episode=8,
stop_value=12000,
),
policy=dict(
cuda=True,
random_collect_size=10000,
expert_random_collect_size=10000,
model=dict(
obs_shape=17,
action_shape=6,
twin_critic=True,
action_space='reparameterization',
actor_head_hidden_size=256,
critic_head_hidden_size=256,
),
nstep=1,
discount_factor=0.97,
learn=dict(
update_per_collect=1,
batch_size=256,
learning_rate_q=1e-3,
learning_rate_policy=1e-3,
learning_rate_alpha=2e-4,
ignore_done=True,
target_theta=0.005,
discount_factor=0.99,
alpha=0.2,
reparameterization=True,
auto_alpha=True,
),
collect=dict(
n_sample=32,
# Users should add their own path here (path should lead to a well-trained model)
model_path='model_path_placeholder',
# Cut trajectories into pieces with length "unroll_len".
unroll_len=1,
),
eval=dict(evaluator=dict(eval_freq=500, )), # note: this is the times after which you learns to evaluate
other=dict(replay_buffer=dict(replay_buffer_size=1000000, ), ),
),
)
halfcheetah_sqil_config = EasyDict(halfcheetah_sqil_config)
main_config = halfcheetah_sqil_config
halfcheetah_sqil_create_config = dict(
env=dict(
type='mujoco',
import_names=['dizoo.mujoco.envs.mujoco_env'],
),
env_manager=dict(type='subprocess'),
policy=dict(type='sqil_sac'),
replay_buffer=dict(type='naive', ),
)
halfcheetah_sqil_create_config = EasyDict(halfcheetah_sqil_create_config)
create_config = halfcheetah_sqil_create_config
if __name__ == "__main__":
# or you can enter `ding -m serial_sqil -c halfcheetah_sqil_sac_config.py -s 0`
# then input the config you used to generate your expert model in the path mentioned above
# e.g. halfcheetah_sac_config.py
from halfcheetah_sac_config import halfcheetah_sac_config, halfcheetah_sac_create_config
from ding.entry import serial_pipeline_sqil
expert_main_config = halfcheetah_sac_config
expert_create_config = halfcheetah_sac_create_config
serial_pipeline_sqil(
[main_config, create_config], [expert_main_config, expert_create_config], seed=0, max_env_step=5000000
)
|