File size: 6,144 Bytes
079c32c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import copy
import os
from itertools import product
from typing import Union, List, Optional

import gym
import numpy as np
from easydict import EasyDict

from ding.envs import BaseEnv, BaseEnvTimestep
from ding.envs.common import save_frames_as_gif
from ding.torch_utils import to_ndarray
from ding.utils import ENV_REGISTRY
from .mujoco_wrappers import wrap_mujoco


@ENV_REGISTRY.register('mujoco-disc')
class MujocoDiscEnv(BaseEnv):
    """
    Overview:
        The modified Mujoco environment with manually discretized action space. For each dimension, equally dividing the
        original continuous action into ``each_dim_disc_size`` bins and using their Cartesian product to obtain
        handcrafted discrete actions.
    """

    @classmethod
    def default_config(cls: type) -> EasyDict:
        cfg = EasyDict(copy.deepcopy(cls.config))
        cfg.cfg_type = cls.__name__ + 'Dict'
        return cfg

    config = dict(
        action_clip=False,
        delay_reward_step=0,
        replay_path=None,
        save_replay_gif=False,
        replay_path_gif=None,
    )

    def __init__(self, cfg: dict) -> None:
        self._cfg = cfg
        self._action_clip = cfg.action_clip
        self._delay_reward_step = cfg.delay_reward_step
        self._init_flag = False
        self._replay_path = None
        self._replay_path_gif = cfg.replay_path_gif
        self._save_replay_gif = cfg.save_replay_gif

    def reset(self) -> np.ndarray:
        if not self._init_flag:
            self._env = self._make_env()
            self._env.observation_space.dtype = np.float32  # To unify the format of envs in DI-engine
            self._observation_space = self._env.observation_space
            self._raw_action_space = self._env.action_space
            self._reward_space = gym.spaces.Box(
                low=self._env.reward_range[0], high=self._env.reward_range[1], shape=(1, ), dtype=np.float32
            )
            self._init_flag = True
        if hasattr(self, '_seed') and hasattr(self, '_dynamic_seed') and self._dynamic_seed:
            np_seed = 100 * np.random.randint(1, 1000)
            self._env.seed(self._seed + np_seed)
        elif hasattr(self, '_seed'):
            self._env.seed(self._seed)
        if self._replay_path is not None:
            self._env = gym.wrappers.RecordVideo(
                self._env,
                video_folder=self._replay_path,
                episode_trigger=lambda episode_id: True,
                name_prefix='rl-video-{}'.format(id(self))
            )
        if self._save_replay_gif:
            self._frames = []
        obs = self._env.reset()
        obs = to_ndarray(obs).astype('float32')

        # disc_to_cont: transform discrete action index to original continuous action
        self.m = self._raw_action_space.shape[0]
        self.n = self._cfg.each_dim_disc_size
        self.K = self.n ** self.m
        self.disc_to_cont = list(product(*[list(range(self.n)) for _ in range(self.m)]))
        self._eval_episode_return = 0.
        # the modified discrete action space
        self._action_space = gym.spaces.Discrete(self.K)

        return obs

    def close(self) -> None:
        if self._init_flag:
            self._env.close()
        self._init_flag = False

    def seed(self, seed: int, dynamic_seed: bool = True) -> None:
        self._seed = seed
        self._dynamic_seed = dynamic_seed
        np.random.seed(self._seed)

    def step(self, action: Union[np.ndarray, list]) -> BaseEnvTimestep:
        # disc_to_cont: transform discrete action index to original continuous action
        action = [-1 + 2 / self.n * k for k in self.disc_to_cont[int(action)]]
        action = to_ndarray(action)

        if self._save_replay_gif:
            self._frames.append(self._env.render(mode='rgb_array'))
        if self._action_clip:
            action = np.clip(action, -1, 1)
        obs, rew, done, info = self._env.step(action)
        self._eval_episode_return += rew

        if done:
            if self._save_replay_gif:
                path = os.path.join(
                    self._replay_path_gif, '{}_episode_{}.gif'.format(self._cfg.env_id, self._save_replay_count)
                )
                save_frames_as_gif(self._frames, path)
                self._save_replay_count += 1
            info['eval_episode_return'] = self._eval_episode_return

        obs = to_ndarray(obs).astype(np.float32)
        rew = to_ndarray([rew]).astype(np.float32)
        return BaseEnvTimestep(obs, rew, done, info)

    def _make_env(self):
        return wrap_mujoco(
            self._cfg.env_id,
            norm_obs=self._cfg.get('norm_obs', None),
            norm_reward=self._cfg.get('norm_reward', None),
            delay_reward_step=self._delay_reward_step
        )

    def enable_save_replay(self, replay_path: Optional[str] = None) -> None:
        if replay_path is None:
            replay_path = './video'
        self._replay_path = replay_path
        self._save_replay = True
        self._save_replay_count = 0

    def random_action(self) -> np.ndarray:
        return self.action_space.sample()

    def __repr__(self) -> str:
        return "DI-engine modified Mujoco Env({}) with manually discretized action space".format(self._cfg.env_id)

    @staticmethod
    def create_collector_env_cfg(cfg: dict) -> List[dict]:
        collector_cfg = copy.deepcopy(cfg)
        collector_env_num = collector_cfg.pop('collector_env_num', 1)
        return [collector_cfg for _ in range(collector_env_num)]

    @staticmethod
    def create_evaluator_env_cfg(cfg: dict) -> List[dict]:
        evaluator_cfg = copy.deepcopy(cfg)
        evaluator_env_num = evaluator_cfg.pop('evaluator_env_num', 1)
        evaluator_cfg.norm_reward.use_norm = False
        return [evaluator_cfg for _ in range(evaluator_env_num)]

    @property
    def observation_space(self) -> gym.spaces.Space:
        return self._observation_space

    @property
    def action_space(self) -> gym.spaces.Space:
        return self._action_space

    @property
    def reward_space(self) -> gym.spaces.Space:
        return self._reward_space