File size: 4,022 Bytes
079c32c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
from typing import Any, List, Union, Sequence
import copy
import gym
import numpy as np
from ding.envs import BaseEnv, BaseEnvTimestep
from ding.utils import ENV_REGISTRY
from ding.torch_utils import to_ndarray, to_list
from .atari_wrappers import wrap_deepmind

from pprint import pprint


def PomdpEnv(cfg, only_info=False):
    '''
    For debug purpose, create an env follow openai gym standard so it can be widely test by
    other library with same environment setting in DI-engine
    env = PomdpEnv(cfg)
    obs = env.reset()
    obs, reward, done, info = env.step(action)
    '''
    env = wrap_deepmind(
        cfg.env_id,
        frame_stack=cfg.frame_stack,
        episode_life=cfg.is_train,
        clip_rewards=cfg.is_train,
        warp_frame=cfg.warp_frame,
        use_ram=cfg.use_ram,
        render=cfg.render,
        pomdp=cfg.pomdp,
        only_info=only_info,
    )
    return env


@ENV_REGISTRY.register('pomdp')
class PomdpAtariEnv(BaseEnv):

    def __init__(self, cfg: dict) -> None:
        self._cfg = cfg
        self._init_flag = False

    def reset(self) -> Sequence:
        if not self._init_flag:
            self._env = self._make_env(only_info=False)
            self._init_flag = True
            self._observation_space = self._env.observation_space
            self._action_space = self._env.action_space
            self._reward_space = gym.spaces.Box(
                low=self._env.reward_range[0], high=self._env.reward_range[1], shape=(1, ), dtype=np.float32
            )
        if hasattr(self, '_seed') and hasattr(self, '_dynamic_seed') and self._dynamic_seed:
            np_seed = 100 * np.random.randint(1, 1000)
            self._env.seed(self._seed + np_seed)
        elif hasattr(self, '_seed'):
            self._env.seed(self._seed)
        obs = self._env.reset()
        obs = to_ndarray(obs)
        self._eval_episode_return = 0.
        return obs

    def close(self) -> None:
        if self._init_flag:
            self._env.close()
        self._init_flag = False

    def seed(self, seed: int, dynamic_seed: bool = True) -> None:
        self._seed = seed
        self._dynamic_seed = dynamic_seed
        np.random.seed(self._seed)

    def step(self, action: np.ndarray) -> BaseEnvTimestep:
        assert isinstance(action, np.ndarray), type(action)
        action = action.item()
        obs, rew, done, info = self._env.step(action)
        self._eval_episode_return += rew
        obs = to_ndarray(obs)
        rew = to_ndarray([rew])  # wrapped to be transfered to a array with shape (1,)
        if done:
            info['eval_episode_return'] = self._eval_episode_return
        return BaseEnvTimestep(obs, rew, done, info)

    def _make_env(self, only_info=False):
        return wrap_deepmind(
            self._cfg.env_id,
            episode_life=self._cfg.is_train,
            clip_rewards=self._cfg.is_train,
            pomdp=self._cfg.pomdp,
            frame_stack=self._cfg.frame_stack,
            warp_frame=self._cfg.warp_frame,
            use_ram=self._cfg.use_ram,
            only_info=only_info,
        )

    def __repr__(self) -> str:
        return "DI-engine POMDP Atari Env({})".format(self._cfg.env_id)

    @staticmethod
    def create_collector_env_cfg(cfg: dict) -> List[dict]:
        collector_env_num = cfg.pop('collector_env_num', 1)
        cfg = copy.deepcopy(cfg)
        cfg.is_train = True
        return [cfg for _ in range(collector_env_num)]

    @staticmethod
    def create_evaluator_env_cfg(cfg: dict) -> List[dict]:
        evaluator_env_num = cfg.pop('evaluator_env_num', 1)
        cfg = copy.deepcopy(cfg)
        cfg.is_train = False
        return [cfg for _ in range(evaluator_env_num)]

    @property
    def observation_space(self) -> gym.spaces.Space:
        return self._observation_space

    @property
    def action_space(self) -> gym.spaces.Space:
        return self._action_space

    @property
    def reward_space(self) -> gym.spaces.Space:
        return self._reward_space