File size: 4,024 Bytes
079c32c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
from typing import Any, List, Union, Optional
import time
import os
import imageio
import gym
import copy
import numpy as np
from easydict import EasyDict
from rocket_recycling.rocket import Rocket
from ding.envs import BaseEnv, BaseEnvTimestep
from ding.torch_utils import to_ndarray, to_list
from ding.utils import ENV_REGISTRY
from ding.envs import ObsPlusPrevActRewWrapper


@ENV_REGISTRY.register('rocket', force_overwrite=True)
class RocketEnv(BaseEnv):

    def __init__(self, cfg: dict = {}) -> None:
        self._cfg = cfg
        self._init_flag = False
        self._save_replay = False
        self._observation_space = gym.spaces.Box(low=float("-inf"), high=float("inf"), shape=(8, ), dtype=np.float32)
        self._action_space = gym.spaces.Discrete(9)
        self._action_space.seed(0)  # default seed
        self._reward_space = gym.spaces.Box(low=float("-inf"), high=float("inf"), shape=(1, ), dtype=np.float32)

    def reset(self) -> np.ndarray:
        if not self._init_flag:
            self._env = Rocket(task=self._cfg.task, max_steps=self._cfg.max_steps)
            self._init_flag = True
        if hasattr(self, '_seed') and hasattr(self, '_dynamic_seed') and self._dynamic_seed:
            np_seed = 100 * np.random.randint(1, 1000)
            self._env.seed(self._seed + np_seed)
            self._action_space.seed(self._seed + np_seed)
        elif hasattr(self, '_seed'):
            self._env.seed(self._seed)
            self._action_space.seed(self._seed)
        self._eval_episode_return = 0
        obs = self._env.reset()
        obs = to_ndarray(obs)
        if self._save_replay:
            self._frames = []
        return obs

    def close(self) -> None:
        if self._init_flag:
            self._env.close()
        self._init_flag = False

    def seed(self, seed: int, dynamic_seed: bool = True) -> None:
        self._seed = seed
        self._dynamic_seed = dynamic_seed
        np.random.seed(self._seed)

    def step(self, action: Union[int, np.ndarray]) -> BaseEnvTimestep:
        if isinstance(action, np.ndarray) and action.shape == (1, ):
            action = action.squeeze()  # 0-dim array

        obs, rew, done, info = self._env.step(action)
        self._env.render()
        self._eval_episode_return += rew

        if self._save_replay:
            self._frames.extend(self._env.render())
        if done:
            info['eval_episode_return'] = self._eval_episode_return
            if self._save_replay:
                path = os.path.join(self._replay_path, '{}_episode.gif'.format(self._save_replay_count))
                self.display_frames_as_gif(self._frames, path)
                self._save_replay_count += 1
        obs = to_ndarray(obs)
        # wrapped to be transfered to a array with shape (1,)
        rew = to_ndarray([rew]).astype(np.float32)
        return BaseEnvTimestep(obs, rew, done, info)

    def enable_save_replay(self, replay_path: Optional[str] = None) -> None:
        if replay_path is None:
            replay_path = './video'
        self._save_replay = True
        if not os.path.exists(replay_path):
            os.makedirs(replay_path)
        self._replay_path = replay_path
        self._save_replay_count = 0

    def random_action(self) -> np.ndarray:
        random_action = self.action_space.sample()
        random_action = to_ndarray([random_action], dtype=np.int64)
        return random_action

    def clone(self, caller: str) -> 'RocketEnv':
        return RocketEnv(copy.deepcopy(self._cfg))

    @property
    def observation_space(self) -> gym.spaces.Space:
        return self._observation_space

    @property
    def action_space(self) -> gym.spaces.Space:
        return self._action_space

    @property
    def reward_space(self) -> gym.spaces.Space:
        return self._reward_space

    def __repr__(self) -> str:
        return "DI-engine Rocket Env"

    @staticmethod
    def display_frames_as_gif(frames: list, path: str) -> None:
        imageio.mimsave(path, frames, fps=20)