File size: 1,658 Bytes
079c32c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 |
from typing import Dict
import gym
from ditk import logging
from ding.envs import ObsNormWrapper, RewardNormWrapper
try:
import gym_sokoban
except ImportError:
logging.warning("not found sokoban env, please install it, refer to https://github.com/mpSchrader/gym-sokoban")
def wrap_sokoban(
env_id, norm_obs: bool = False, norm_reward: Dict = dict(use_norm=False, ), only_info=False
) -> gym.Env:
r"""
Overview:
Wrap Sokoban Env to preprocess env step's return info, e.g. observation normalization, reward normalization, etc.
Arguments:
- env_id (:obj:`str`): Mujoco environment id, for example "HalfCheetah-v3"
- norm_obs (:obj:`EasyDict`): Whether to normalize observation or not
- norm_reward (:obj:`EasyDict`): Whether to normalize reward or not. For evaluator, environment's reward \
should not be normalized: Either ``norm_reward`` is None or ``norm_reward.use_norm`` is False can do this.
Returns:
- wrapped_env (:obj:`gym.Env`): The wrapped mujoco environment
"""
if not only_info:
env = gym.make(env_id)
if norm_obs is not None and norm_obs.use_norm:
env = ObsNormWrapper(env)
if norm_reward is not None and norm_reward.use_norm:
env = RewardNormWrapper(env, norm_reward.reward_discount)
return env
else:
wrapper_info = ''
if norm_obs is not None and norm_obs.use_norm:
wrapper_info = ObsNormWrapper.__name__ + '\n'
if norm_reward is not None and norm_reward.use_norm:
wrapper_info += RewardNormWrapper.__name__ + '\n'
return wrapper_info
|