File size: 18,133 Bytes
079c32c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 |
import copy
import time
from abc import ABC, abstractmethod
from typing import Any, List, Tuple, Optional, Union, TYPE_CHECKING
import numpy as np
from ding.torch_utils.data_helper import to_list
from ding.utils import BUFFER_REGISTRY
from easydict import EasyDict
if TYPE_CHECKING:
from lzero.policy import MuZeroPolicy, EfficientZeroPolicy, SampledEfficientZeroPolicy, GumbelMuZeroPolicy
@BUFFER_REGISTRY.register('game_buffer')
class GameBuffer(ABC, object):
"""
Overview:
The base game buffer class for MuZeroPolicy, EfficientZeroPolicy, SampledEfficientZeroPolicy, GumbelMuZeroPolicy.
"""
@classmethod
def default_config(cls: type) -> EasyDict:
cfg = EasyDict(copy.deepcopy(cls.config))
cfg.cfg_type = cls.__name__ + 'Dict'
return cfg
# Default configuration for GameBuffer.
config = dict(
# (int) The size/capacity of the replay buffer in terms of transitions.
replay_buffer_size=int(1e6),
# (float) The ratio of experiences required for the reanalyzing part in a minibatch.
reanalyze_ratio=0.3,
# (bool) Whether to consider outdated experiences for reanalyzing. If True, we first sort the data in the minibatch by the time it was produced
# and only reanalyze the oldest ``reanalyze_ratio`` fraction.
reanalyze_outdated=True,
# (bool) Whether to use the root value in the reanalyzing part. Please refer to EfficientZero paper for details.
use_root_value=False,
# (int) The number of samples required for mini inference.
mini_infer_size=256,
)
def __init__(self, cfg: dict):
super().__init__()
"""
Overview:
Use the default configuration mechanism. If a user passes in a cfg with a key that matches an existing key
in the default configuration, the user-provided value will override the default configuration. Otherwise,
the default configuration will be used.
"""
default_config = self.default_config()
default_config.update(cfg)
self._cfg = default_config
self._cfg = cfg
assert self._cfg.env_type in ['not_board_games', 'board_games']
assert self._cfg.action_type in ['fixed_action_space', 'varied_action_space']
self.replay_buffer_size = self._cfg.replay_buffer_size
self.batch_size = self._cfg.batch_size
self._alpha = self._cfg.priority_prob_alpha
self._beta = self._cfg.priority_prob_beta
self.game_segment_buffer = []
self.game_pos_priorities = []
self.game_segment_game_pos_look_up = []
self.keep_ratio = 1
self.num_of_collected_episodes = 0
self.base_idx = 0
self.clear_time = 0
@abstractmethod
def sample(
self, batch_size: int, policy: Union["MuZeroPolicy", "EfficientZeroPolicy", "SampledEfficientZeroPolicy", "GumbelMuZeroPolicy"]
) -> List[Any]:
"""
Overview:
sample data from ``GameBuffer`` and prepare the current and target batch for training.
Arguments:
- batch_size (:obj:`int`): batch size.
- policy (:obj:`Union["MuZeroPolicy", "EfficientZeroPolicy", "SampledEfficientZeroPolicy", "GumbelMuZeroPolicy"]`): policy.
Returns:
- train_data (:obj:`List`): List of train data, including current_batch and target_batch.
"""
@abstractmethod
def _make_batch(self, orig_data: Any, reanalyze_ratio: float) -> Tuple[Any]:
"""
Overview:
prepare the context of a batch
reward_value_context: the context of reanalyzed value targets
policy_re_context: the context of reanalyzed policy targets
policy_non_re_context: the context of non-reanalyzed policy targets
current_batch: the inputs of batch
Arguments:
orig_data: Any batch context from replay buffer
reanalyze_ratio: float ratio of reanalyzed policy (value is 100% reanalyzed)
Returns:
- context (:obj:`Tuple`): reward_value_context, policy_re_context, policy_non_re_context, current_batch
"""
pass
def _sample_orig_data(self, batch_size: int) -> Tuple:
"""
Overview:
sample orig_data that contains:
game_segment_list: a list of game segments
pos_in_game_segment_list: transition index in game (relative index)
batch_index_list: the index of start transition of sampled minibatch in replay buffer
weights_list: the weight concerning the priority
make_time: the time the batch is made (for correctly updating replay buffer when data is deleted)
Arguments:
- batch_size (:obj:`int`): batch size
- beta: float the parameter in PER for calculating the priority
"""
assert self._beta > 0
num_of_transitions = self.get_num_of_transitions()
if self._cfg.use_priority is False:
self.game_pos_priorities = np.ones_like(self.game_pos_priorities)
# +1e-6 for numerical stability
probs = self.game_pos_priorities ** self._alpha + 1e-6
probs /= probs.sum()
# sample according to transition index
# TODO(pu): replace=True
batch_index_list = np.random.choice(num_of_transitions, batch_size, p=probs, replace=False)
if self._cfg.reanalyze_outdated is True:
# NOTE: used in reanalyze part
batch_index_list.sort()
weights_list = (num_of_transitions * probs[batch_index_list]) ** (-self._beta)
weights_list /= weights_list.max()
game_segment_list = []
pos_in_game_segment_list = []
for idx in batch_index_list:
game_segment_idx, pos_in_game_segment = self.game_segment_game_pos_look_up[idx]
game_segment_idx -= self.base_idx
game_segment = self.game_segment_buffer[game_segment_idx]
game_segment_list.append(game_segment)
pos_in_game_segment_list.append(pos_in_game_segment)
make_time = [time.time() for _ in range(len(batch_index_list))]
orig_data = (game_segment_list, pos_in_game_segment_list, batch_index_list, weights_list, make_time)
return orig_data
def _preprocess_to_play_and_action_mask(
self, game_segment_batch_size, to_play_segment, action_mask_segment, pos_in_game_segment_list
):
"""
Overview:
prepare the to_play and action_mask for the target obs in ``value_obs_list``
- to_play: {list: game_segment_batch_size * (num_unroll_steps+1)}
- action_mask: {list: game_segment_batch_size * (num_unroll_steps+1)}
"""
to_play = []
for bs in range(game_segment_batch_size):
to_play_tmp = list(
to_play_segment[bs][pos_in_game_segment_list[bs]:pos_in_game_segment_list[bs] +
self._cfg.num_unroll_steps + 1]
)
if len(to_play_tmp) < self._cfg.num_unroll_steps + 1:
# NOTE: the effective to play index is {1,2}, for null padding data, we set to_play=-1
to_play_tmp += [-1 for _ in range(self._cfg.num_unroll_steps + 1 - len(to_play_tmp))]
to_play.append(to_play_tmp)
to_play = sum(to_play, [])
if self._cfg.model.continuous_action_space is True:
# when the action space of the environment is continuous, action_mask[:] is None.
return to_play, None
action_mask = []
for bs in range(game_segment_batch_size):
action_mask_tmp = list(
action_mask_segment[bs][pos_in_game_segment_list[bs]:pos_in_game_segment_list[bs] +
self._cfg.num_unroll_steps + 1]
)
if len(action_mask_tmp) < self._cfg.num_unroll_steps + 1:
action_mask_tmp += [
list(np.ones(self._cfg.model.action_space_size, dtype=np.int8))
for _ in range(self._cfg.num_unroll_steps + 1 - len(action_mask_tmp))
]
action_mask.append(action_mask_tmp)
action_mask = to_list(action_mask)
action_mask = sum(action_mask, [])
return to_play, action_mask
@abstractmethod
def _prepare_reward_value_context(
self, batch_index_list: List[str], game_segment_list: List[Any], pos_in_game_segment_list: List[Any],
total_transitions: int
) -> List[Any]:
"""
Overview:
prepare the context of rewards and values for calculating TD value target in reanalyzing part.
Arguments:
- batch_index_list (:obj:`list`): the index of start transition of sampled minibatch in replay buffer
- game_segment_list (:obj:`list`): list of game segments
- pos_in_game_segment_list (:obj:`list`): list of transition index in game_segment
- total_transitions (:obj:`int`): number of collected transitions
Returns:
- reward_value_context (:obj:`list`): value_obs_lst, value_mask, state_index_lst, rewards_lst, game_segment_lens,
td_steps_lst, action_mask_segment, to_play_segment
"""
pass
@abstractmethod
def _prepare_policy_non_reanalyzed_context(
self, batch_index_list: List[int], game_segment_list: List[Any], pos_in_game_segment_list: List[int]
) -> List[Any]:
"""
Overview:
prepare the context of policies for calculating policy target in non-reanalyzing part, just return the policy in self-play
Arguments:
- batch_index_list (:obj:`list`): the index of start transition of sampled minibatch in replay buffer
- game_segment_list (:obj:`list`): list of game segments
- pos_in_game_segment_list (:obj:`list`): list transition index in game
Returns:
- policy_non_re_context (:obj:`list`): state_index_lst, child_visits, game_segment_lens, action_mask_segment, to_play_segment
"""
pass
@abstractmethod
def _prepare_policy_reanalyzed_context(
self, batch_index_list: List[str], game_segment_list: List[Any], pos_in_game_segment_list: List[str]
) -> List[Any]:
"""
Overview:
prepare the context of policies for calculating policy target in reanalyzing part.
Arguments:
- batch_index_list (:obj:'list'): start transition index in the replay buffer
- game_segment_list (:obj:'list'): list of game segments
- pos_in_game_segment_list (:obj:'list'): position of transition index in one game history
Returns:
- policy_re_context (:obj:`list`): policy_obs_lst, policy_mask, state_index_lst, indices,
child_visits, game_segment_lens, action_mask_segment, to_play_segment
"""
pass
@abstractmethod
def _compute_target_reward_value(self, reward_value_context: List[Any], model: Any) -> List[np.ndarray]:
"""
Overview:
prepare reward and value targets from the context of rewards and values.
Arguments:
- reward_value_context (:obj:'list'): the reward value context
- model (:obj:'torch.tensor'):model of the target model
Returns:
- batch_value_prefixs (:obj:'np.ndarray): batch of value prefix
- batch_target_values (:obj:'np.ndarray): batch of value estimation
"""
pass
@abstractmethod
def _compute_target_policy_reanalyzed(self, policy_re_context: List[Any], model: Any) -> np.ndarray:
"""
Overview:
prepare policy targets from the reanalyzed context of policies
Arguments:
- policy_re_context (:obj:`List`): List of policy context to reanalyzed
Returns:
- batch_target_policies_re
"""
pass
@abstractmethod
def _compute_target_policy_non_reanalyzed(
self, policy_non_re_context: List[Any], policy_shape: Optional[int]
) -> np.ndarray:
"""
Overview:
prepare policy targets from the non-reanalyzed context of policies
Arguments:
- policy_non_re_context (:obj:`List`): List containing:
- pos_in_game_segment_list
- child_visits
- game_segment_lens
- action_mask_segment
- to_play_segment
Returns:
- batch_target_policies_non_re
"""
pass
@abstractmethod
def update_priority(
self, train_data: Optional[List[Optional[np.ndarray]]], batch_priorities: Optional[Any]
) -> None:
"""
Overview:
Update the priority of training data.
Arguments:
- train_data (:obj:`Optional[List[Optional[np.ndarray]]]`): training data to be updated priority.
- batch_priorities (:obj:`batch_priorities`): priorities to update to.
"""
pass
def push_game_segments(self, data_and_meta: Any) -> None:
"""
Overview:
Push game_segments data and it's meta information into buffer.
Save a game segment
Arguments:
- data_and_meta
- data (:obj:`Any`): The data (game segments) which will be pushed into buffer.
- meta (:obj:`dict`): Meta information, e.g. priority, count, staleness.
"""
data, meta = data_and_meta
for (data_game, meta_game) in zip(data, meta):
self._push_game_segment(data_game, meta_game)
def _push_game_segment(self, data: Any, meta: Optional[dict] = None) -> None:
"""
Overview:
Push data and it's meta information in buffer.
Save a game segment.
Arguments:
- data (:obj:`Any`): The data (a game segment) which will be pushed into buffer.
- meta (:obj:`dict`): Meta information, e.g. priority, count, staleness.
- done (:obj:`bool`): whether the game is finished.
- unroll_plus_td_steps (:obj:`int`): if the game is not finished, we only save the transitions that can be computed
- priorities (:obj:`list`): the priorities corresponding to the transitions in the game history
Returns:
- buffered_data (:obj:`BufferedData`): The pushed data.
"""
if meta['done']:
self.num_of_collected_episodes += 1
valid_len = len(data)
else:
valid_len = len(data) - meta['unroll_plus_td_steps']
if meta['priorities'] is None:
max_prio = self.game_pos_priorities.max() if self.game_segment_buffer else 1
# if no 'priorities' provided, set the valid part of the new-added game history the max_prio
self.game_pos_priorities = np.concatenate(
(
self.game_pos_priorities, [max_prio
for _ in range(valid_len)] + [0. for _ in range(valid_len, len(data))]
)
)
else:
assert len(data) == len(meta['priorities']), " priorities should be of same length as the game steps"
priorities = meta['priorities'].copy().reshape(-1)
priorities[valid_len:len(data)] = 0.
self.game_pos_priorities = np.concatenate((self.game_pos_priorities, priorities))
self.game_segment_buffer.append(data)
self.game_segment_game_pos_look_up += [
(self.base_idx + len(self.game_segment_buffer) - 1, step_pos) for step_pos in range(len(data))
]
def remove_oldest_data_to_fit(self) -> None:
"""
Overview:
remove some oldest data if the replay buffer is full.
"""
assert self.replay_buffer_size > self._cfg.batch_size, "replay buffer size should be larger than batch size"
nums_of_game_segments = self.get_num_of_game_segments()
total_transition = self.get_num_of_transitions()
if total_transition > self.replay_buffer_size:
index = 0
for i in range(nums_of_game_segments):
total_transition -= len(self.game_segment_buffer[i])
if total_transition <= self.replay_buffer_size * self.keep_ratio:
# find the max game_segment index to keep in the buffer
index = i
break
if total_transition >= self._cfg.batch_size:
self._remove(index + 1)
def _remove(self, excess_game_segment_index: List[int]) -> None:
"""
Overview:
delete game segments in index [0: excess_game_segment_index]
Arguments:
- excess_game_segment_index (:obj:`List[str]`): Index of data.
"""
excess_game_positions = sum(
[len(game_segment) for game_segment in self.game_segment_buffer[:excess_game_segment_index]]
)
del self.game_segment_buffer[:excess_game_segment_index]
self.game_pos_priorities = self.game_pos_priorities[excess_game_positions:]
del self.game_segment_game_pos_look_up[:excess_game_positions]
self.base_idx += excess_game_segment_index
self.clear_time = time.time()
def get_num_of_episodes(self) -> int:
# number of collected episodes
return self.num_of_collected_episodes
def get_num_of_game_segments(self) -> int:
# num of game segments
return len(self.game_segment_buffer)
def get_num_of_transitions(self) -> int:
# total number of transitions
return len(self.game_segment_game_pos_look_up)
def __repr__(self):
return f'current buffer statistics is: num_of_all_collected_episodes: {self.num_of_collected_episodes}, num of game segments: {len(self.game_segment_buffer)}, number of transitions: {len(self.game_segment_game_pos_look_up)}'
|