File size: 24,202 Bytes
079c32c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 |
from typing import Any, List
import numpy as np
import torch
from ding.utils import BUFFER_REGISTRY
from lzero.mcts.tree_search.mcts_ctree import EfficientZeroMCTSCtree as MCTSCtree
from lzero.mcts.tree_search.mcts_ptree import EfficientZeroMCTSPtree as MCTSPtree
from lzero.mcts.utils import prepare_observation
from lzero.policy import to_detach_cpu_numpy, concat_output, concat_output_value, inverse_scalar_transform
from .game_buffer_muzero import MuZeroGameBuffer
@BUFFER_REGISTRY.register('game_buffer_efficientzero')
class EfficientZeroGameBuffer(MuZeroGameBuffer):
"""
Overview:
The specific game buffer for EfficientZero policy.
"""
def __init__(self, cfg: dict):
super().__init__(cfg)
"""
Overview:
Use the default configuration mechanism. If a user passes in a cfg with a key that matches an existing key
in the default configuration, the user-provided value will override the default configuration. Otherwise,
the default configuration will be used.
"""
default_config = self.default_config()
default_config.update(cfg)
self._cfg = default_config
assert self._cfg.env_type in ['not_board_games', 'board_games']
assert self._cfg.action_type in ['fixed_action_space', 'varied_action_space']
self.replay_buffer_size = self._cfg.replay_buffer_size
self.batch_size = self._cfg.batch_size
self._alpha = self._cfg.priority_prob_alpha
self._beta = self._cfg.priority_prob_beta
self.game_segment_buffer = []
self.game_pos_priorities = []
self.game_segment_game_pos_look_up = []
self.keep_ratio = 1
self.num_of_collected_episodes = 0
self.base_idx = 0
self.clear_time = 0
def sample(self, batch_size: int, policy: Any) -> List[Any]:
"""
Overview:
sample data from ``GameBuffer`` and prepare the current and target batch for training
Arguments:
- batch_size (:obj:`int`): batch size
- policy (:obj:`torch.tensor`): model of policy
Returns:
- train_data (:obj:`List`): List of train data
"""
policy._target_model.to(self._cfg.device)
policy._target_model.eval()
# obtain the current_batch and prepare target context
reward_value_context, policy_re_context, policy_non_re_context, current_batch = self._make_batch(
batch_size, self._cfg.reanalyze_ratio
)
# target value_prefixs, target value
batch_value_prefixs, batch_target_values = self._compute_target_reward_value(
reward_value_context, policy._target_model
)
# target policy
batch_target_policies_re = self._compute_target_policy_reanalyzed(policy_re_context, policy._target_model)
batch_target_policies_non_re = self._compute_target_policy_non_reanalyzed(
policy_non_re_context, self._cfg.model.action_space_size
)
if 0 < self._cfg.reanalyze_ratio < 1:
batch_target_policies = np.concatenate([batch_target_policies_re, batch_target_policies_non_re])
elif self._cfg.reanalyze_ratio == 1:
batch_target_policies = batch_target_policies_re
elif self._cfg.reanalyze_ratio == 0:
batch_target_policies = batch_target_policies_non_re
target_batch = [batch_value_prefixs, batch_target_values, batch_target_policies]
# a batch contains the current_batch and the target_batch
train_data = [current_batch, target_batch]
return train_data
def _prepare_reward_value_context(
self, batch_index_list: List[str], game_segment_list: List[Any], pos_in_game_segment_list: List[Any],
total_transitions: int
) -> List[Any]:
"""
Overview:
prepare the context of rewards and values for calculating TD value target in reanalyzing part.
Arguments:
- batch_index_list (:obj:`list`): the index of start transition of sampled minibatch in replay buffer
- game_segment_list (:obj:`list`): list of game segments
- pos_in_game_segment_list (:obj:`list`): list of transition index in game_segment
- total_transitions (:obj:`int`): number of collected transitions
Returns:
- reward_value_context (:obj:`list`): value_obs_list, value_mask, pos_in_game_segment_list, rewards_list, game_segment_lens,
td_steps_list, action_mask_segment, to_play_segment
"""
zero_obs = game_segment_list[0].zero_obs()
value_obs_list = []
# the value is valid or not (out of trajectory)
value_mask = []
rewards_list = []
game_segment_lens = []
# for two_player board games
action_mask_segment, to_play_segment = [], []
td_steps_list = []
for game_segment, state_index, idx in zip(game_segment_list, pos_in_game_segment_list, batch_index_list):
game_segment_len = len(game_segment)
game_segment_lens.append(game_segment_len)
# ==============================================================
# EfficientZero related core code
# ==============================================================
# TODO(pu):
# for atari, off-policy correction: shorter horizon of td steps
# delta_td = (total_transitions - idx) // config.auto_td_steps
# td_steps = config.td_steps - delta_td
# td_steps = np.clip(td_steps, 1, 5).astype(np.int)
td_steps = np.clip(self._cfg.td_steps, 1, max(1, game_segment_len - state_index)).astype(np.int32)
# prepare the corresponding observations for bootstrapped values o_{t+k}
# o[t+ td_steps, t + td_steps + stack frames + num_unroll_steps]
# t=2+3 -> o[2+3, 2+3+4+5] -> o[5, 14]
game_obs = game_segment.get_unroll_obs(state_index + td_steps, self._cfg.num_unroll_steps)
rewards_list.append(game_segment.reward_segment)
# for two_player board games
action_mask_segment.append(game_segment.action_mask_segment)
to_play_segment.append(game_segment.to_play_segment)
for current_index in range(state_index, state_index + self._cfg.num_unroll_steps + 1):
# get the <num_unroll_steps+1> bootstrapped target obs
td_steps_list.append(td_steps)
# index of bootstrapped obs o_{t+td_steps}
bootstrap_index = current_index + td_steps
if bootstrap_index < game_segment_len:
value_mask.append(1)
# beg_index = bootstrap_index - (state_index + td_steps), max of beg_index is num_unroll_steps
beg_index = current_index - state_index
end_index = beg_index + self._cfg.model.frame_stack_num
# the stacked obs in time t
obs = game_obs[beg_index:end_index]
else:
value_mask.append(0)
obs = zero_obs
value_obs_list.append(obs)
reward_value_context = [
value_obs_list, value_mask, pos_in_game_segment_list, rewards_list, game_segment_lens, td_steps_list,
action_mask_segment, to_play_segment
]
return reward_value_context
def _compute_target_reward_value(self, reward_value_context: List[Any], model: Any) -> List[np.ndarray]:
"""
Overview:
prepare reward and value targets from the context of rewards and values.
Arguments:
- reward_value_context (:obj:'list'): the reward value context
- model (:obj:'torch.tensor'):model of the target model
Returns:
- batch_value_prefixs (:obj:'np.ndarray): batch of value prefix
- batch_target_values (:obj:'np.ndarray): batch of value estimation
"""
value_obs_list, value_mask, pos_in_game_segment_list, rewards_list, game_segment_lens, td_steps_list, action_mask_segment, \
to_play_segment = reward_value_context # noqa
# transition_batch_size = game_segment_batch_size * (num_unroll_steps+1)
transition_batch_size = len(value_obs_list)
game_segment_batch_size = len(pos_in_game_segment_list)
to_play, action_mask = self._preprocess_to_play_and_action_mask(
game_segment_batch_size, to_play_segment, action_mask_segment, pos_in_game_segment_list
)
legal_actions = [[i for i, x in enumerate(action_mask[j]) if x == 1] for j in range(transition_batch_size)]
# ==============================================================
# EfficientZero related core code
# ==============================================================
batch_target_values, batch_value_prefixs = [], []
with torch.no_grad():
value_obs_list = prepare_observation(value_obs_list, self._cfg.model.model_type)
# split a full batch into slices of mini_infer_size: to save the GPU memory for more GPU actors
slices = int(np.ceil(transition_batch_size / self._cfg.mini_infer_size))
network_output = []
for i in range(slices):
beg_index = self._cfg.mini_infer_size * i
end_index = self._cfg.mini_infer_size * (i + 1)
m_obs = torch.from_numpy(value_obs_list[beg_index:end_index]).to(self._cfg.device).float()
# calculate the target value
m_output = model.initial_inference(m_obs)
if not model.training:
# ==============================================================
# EfficientZero related core code
# ==============================================================
# if not in training, obtain the scalars of the value/reward
[m_output.latent_state, m_output.value, m_output.policy_logits] = to_detach_cpu_numpy(
[
m_output.latent_state,
inverse_scalar_transform(m_output.value, self._cfg.model.support_scale),
m_output.policy_logits
]
)
m_output.reward_hidden_state = (
m_output.reward_hidden_state[0].detach().cpu().numpy(),
m_output.reward_hidden_state[1].detach().cpu().numpy()
)
network_output.append(m_output)
# concat the output slices after model inference
if self._cfg.use_root_value:
# use the root values from MCTS, as in EfficiientZero
# the root values have limited improvement but require much more GPU actors;
_, value_prefix_pool, policy_logits_pool, latent_state_roots, reward_hidden_state_roots = concat_output(
network_output, data_type='efficientzero'
)
value_prefix_pool = value_prefix_pool.squeeze().tolist()
policy_logits_pool = policy_logits_pool.tolist()
noises = [
np.random.dirichlet([self._cfg.root_dirichlet_alpha] * self._cfg.model.action_space_size
).astype(np.float32).tolist() for _ in range(transition_batch_size)
]
if self._cfg.mcts_ctree:
# cpp mcts_tree
roots = MCTSCtree.roots(transition_batch_size, legal_actions)
roots.prepare(self._cfg.root_noise_weight, noises, value_prefix_pool, policy_logits_pool, to_play)
# do MCTS for a new policy with the recent target model
MCTSCtree(self._cfg).search(roots, model, latent_state_roots, reward_hidden_state_roots, to_play)
else:
# python mcts_tree
roots = MCTSPtree.roots(transition_batch_size, legal_actions)
roots.prepare(self._cfg.root_noise_weight, noises, value_prefix_pool, policy_logits_pool, to_play)
# do MCTS for a new policy with the recent target model
MCTSPtree(self._cfg).search(
roots, model, latent_state_roots, reward_hidden_state_roots, to_play=to_play
)
roots_values = roots.get_values()
value_list = np.array(roots_values)
else:
# use the predicted values
value_list = concat_output_value(network_output)
# get last state value
if self._cfg.env_type == 'board_games' and to_play_segment[0][0] in [1, 2]:
# TODO(pu): for board_games, very important, to check
value_list = value_list.reshape(-1) * np.array(
[
self._cfg.discount_factor ** td_steps_list[i] if int(td_steps_list[i]) %
2 == 0 else -self._cfg.discount_factor ** td_steps_list[i]
for i in range(transition_batch_size)
]
)
else:
value_list = value_list.reshape(-1) * (
np.array([self._cfg.discount_factor for _ in range(transition_batch_size)]) ** td_steps_list
)
value_list = value_list * np.array(value_mask)
value_list = value_list.tolist()
horizon_id, value_index = 0, 0
for game_segment_len_non_re, reward_list, state_index, to_play_list in zip(game_segment_lens, rewards_list,
pos_in_game_segment_list,
to_play_segment):
target_values = []
target_value_prefixs = []
value_prefix = 0.0
base_index = state_index
for current_index in range(state_index, state_index + self._cfg.num_unroll_steps + 1):
bootstrap_index = current_index + td_steps_list[value_index]
for i, reward in enumerate(reward_list[current_index:bootstrap_index]):
if self._cfg.env_type == 'board_games' and to_play_segment[0][0] in [1, 2]:
# TODO(pu): for board_games, very important, to check
if to_play_list[base_index] == to_play_list[i]:
value_list[value_index] += reward * self._cfg.discount_factor ** i
else:
value_list[value_index] += -reward * self._cfg.discount_factor ** i
else:
value_list[value_index] += reward * self._cfg.discount_factor ** i
# reset every lstm_horizon_len
if horizon_id % self._cfg.lstm_horizon_len == 0:
value_prefix = 0.0
base_index = current_index
horizon_id += 1
if current_index < game_segment_len_non_re:
target_values.append(value_list[value_index])
# TODO: Since the horizon is small and the discount_factor is close to 1.
# Compute the reward sum to approximate the value prefix for simplification
value_prefix += reward_list[current_index
] # * self._cfg.discount_factor ** (current_index - base_index)
target_value_prefixs.append(value_prefix)
else:
target_values.append(0)
target_value_prefixs.append(value_prefix)
value_index += 1
batch_value_prefixs.append(target_value_prefixs)
batch_target_values.append(target_values)
batch_value_prefixs = np.asarray(batch_value_prefixs, dtype=object)
batch_target_values = np.asarray(batch_target_values, dtype=object)
return batch_value_prefixs, batch_target_values
def _compute_target_policy_reanalyzed(self, policy_re_context: List[Any], model: Any) -> np.ndarray:
"""
Overview:
prepare policy targets from the reanalyzed context of policies
Arguments:
- policy_re_context (:obj:`List`): List of policy context to reanalyzed
Returns:
- batch_target_policies_re
"""
if policy_re_context is None:
return []
batch_target_policies_re = []
policy_obs_list, policy_mask, pos_in_game_segment_list, batch_index_list, child_visits, game_segment_lens, action_mask_segment, \
to_play_segment = policy_re_context # noqa
# transition_batch_size = game_segment_batch_size * (self._cfg.num_unroll_steps + 1)
transition_batch_size = len(policy_obs_list)
game_segment_batch_size = len(pos_in_game_segment_list)
to_play, action_mask = self._preprocess_to_play_and_action_mask(
game_segment_batch_size, to_play_segment, action_mask_segment, pos_in_game_segment_list
)
legal_actions = [[i for i, x in enumerate(action_mask[j]) if x == 1] for j in range(transition_batch_size)]
with torch.no_grad():
policy_obs_list = prepare_observation(policy_obs_list, self._cfg.model.model_type)
# split a full batch into slices of mini_infer_size: to save the GPU memory for more GPU actors
slices = int(np.ceil(transition_batch_size / self._cfg.mini_infer_size))
network_output = []
for i in range(slices):
beg_index = self._cfg.mini_infer_size * i
end_index = self._cfg.mini_infer_size * (i + 1)
m_obs = torch.from_numpy(policy_obs_list[beg_index:end_index]).to(self._cfg.device).float()
m_output = model.initial_inference(m_obs)
if not model.training:
# if not in training, obtain the scalars of the value/reward
[m_output.latent_state, m_output.value, m_output.policy_logits] = to_detach_cpu_numpy(
[
m_output.latent_state,
inverse_scalar_transform(m_output.value, self._cfg.model.support_scale),
m_output.policy_logits
]
)
m_output.reward_hidden_state = (
m_output.reward_hidden_state[0].detach().cpu().numpy(),
m_output.reward_hidden_state[1].detach().cpu().numpy()
)
network_output.append(m_output)
_, value_prefix_pool, policy_logits_pool, latent_state_roots, reward_hidden_state_roots = concat_output(
network_output, data_type='efficientzero'
)
value_prefix_pool = value_prefix_pool.squeeze().tolist()
policy_logits_pool = policy_logits_pool.tolist()
noises = [
np.random.dirichlet([self._cfg.root_dirichlet_alpha] * self._cfg.model.action_space_size
).astype(np.float32).tolist() for _ in range(transition_batch_size)
]
if self._cfg.mcts_ctree:
# cpp mcts_tree
roots = MCTSCtree.roots(transition_batch_size, legal_actions)
roots.prepare(self._cfg.root_noise_weight, noises, value_prefix_pool, policy_logits_pool, to_play)
# do MCTS for a new policy with the recent target model
MCTSCtree(self._cfg).search(roots, model, latent_state_roots, reward_hidden_state_roots, to_play)
else:
# python mcts_tree
roots = MCTSPtree.roots(transition_batch_size, legal_actions)
roots.prepare(self._cfg.root_noise_weight, noises, value_prefix_pool, policy_logits_pool, to_play)
# do MCTS for a new policy with the recent target model
MCTSPtree(self._cfg).search(
roots, model, latent_state_roots, reward_hidden_state_roots, to_play=to_play
)
roots_legal_actions_list = legal_actions
roots_distributions = roots.get_distributions()
policy_index = 0
for state_index, game_index in zip(pos_in_game_segment_list, batch_index_list):
target_policies = []
for current_index in range(state_index, state_index + self._cfg.num_unroll_steps + 1):
distributions = roots_distributions[policy_index]
if policy_mask[policy_index] == 0:
# NOTE: the invalid padding target policy, O is to make sure the correspoding cross_entropy_loss=0
target_policies.append([0 for _ in range(self._cfg.model.action_space_size)])
else:
if distributions is None:
# if at some obs, the legal_action is None, add the fake target_policy
target_policies.append(
list(np.ones(self._cfg.model.action_space_size) / self._cfg.model.action_space_size)
)
else:
if self._cfg.mcts_ctree:
# cpp mcts_tree
if self._cfg.action_type == 'fixed_action_space':
sum_visits = sum(distributions)
policy = [visit_count / sum_visits for visit_count in distributions]
target_policies.append(policy)
else:
# for two_player board games
policy_tmp = [0 for _ in range(self._cfg.model.action_space_size)]
# to make sure target_policies have the same dimension
sum_visits = sum(distributions)
policy = [visit_count / sum_visits for visit_count in distributions]
for index, legal_action in enumerate(roots_legal_actions_list[policy_index]):
policy_tmp[legal_action] = policy[index]
target_policies.append(policy_tmp)
else:
# python mcts_tree
if self._cfg.action_type == 'fixed_action_space':
sum_visits = sum(distributions)
policy = [visit_count / sum_visits for visit_count in distributions]
target_policies.append(policy)
else:
# for two_player board games
policy_tmp = [0 for _ in range(self._cfg.model.action_space_size)]
# to make sure target_policies have the same dimension
sum_visits = sum(distributions)
policy = [visit_count / sum_visits for visit_count in distributions]
for index, legal_action in enumerate(roots_legal_actions_list[policy_index]):
policy_tmp[legal_action] = policy[index]
target_policies.append(policy_tmp)
policy_index += 1
batch_target_policies_re.append(target_policies)
batch_target_policies_re = np.array(batch_target_policies_re)
return batch_target_policies_re
|