File size: 24,202 Bytes
079c32c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
from typing import Any, List

import numpy as np
import torch
from ding.utils import BUFFER_REGISTRY

from lzero.mcts.tree_search.mcts_ctree import EfficientZeroMCTSCtree as MCTSCtree
from lzero.mcts.tree_search.mcts_ptree import EfficientZeroMCTSPtree as MCTSPtree
from lzero.mcts.utils import prepare_observation
from lzero.policy import to_detach_cpu_numpy, concat_output, concat_output_value, inverse_scalar_transform
from .game_buffer_muzero import MuZeroGameBuffer


@BUFFER_REGISTRY.register('game_buffer_efficientzero')
class EfficientZeroGameBuffer(MuZeroGameBuffer):
    """
    Overview:
        The specific game buffer for EfficientZero policy.
    """

    def __init__(self, cfg: dict):
        super().__init__(cfg)
        """
        Overview:
            Use the default configuration mechanism. If a user passes in a cfg with a key that matches an existing key
            in the default configuration, the user-provided value will override the default configuration. Otherwise,
            the default configuration will be used.
        """
        default_config = self.default_config()
        default_config.update(cfg)
        self._cfg = default_config
        assert self._cfg.env_type in ['not_board_games', 'board_games']
        assert self._cfg.action_type in ['fixed_action_space', 'varied_action_space']
        self.replay_buffer_size = self._cfg.replay_buffer_size
        self.batch_size = self._cfg.batch_size
        self._alpha = self._cfg.priority_prob_alpha
        self._beta = self._cfg.priority_prob_beta

        self.game_segment_buffer = []
        self.game_pos_priorities = []
        self.game_segment_game_pos_look_up = []

        self.keep_ratio = 1
        self.num_of_collected_episodes = 0
        self.base_idx = 0
        self.clear_time = 0

    def sample(self, batch_size: int, policy: Any) -> List[Any]:
        """
        Overview:
            sample data from ``GameBuffer`` and prepare the current and target batch for training
        Arguments:
            - batch_size (:obj:`int`): batch size
            - policy (:obj:`torch.tensor`): model of policy
        Returns:
            - train_data (:obj:`List`): List of train data
        """
        policy._target_model.to(self._cfg.device)
        policy._target_model.eval()

        # obtain the current_batch and prepare target context
        reward_value_context, policy_re_context, policy_non_re_context, current_batch = self._make_batch(
            batch_size, self._cfg.reanalyze_ratio
        )

        # target value_prefixs, target value
        batch_value_prefixs, batch_target_values = self._compute_target_reward_value(
            reward_value_context, policy._target_model
        )
        # target policy
        batch_target_policies_re = self._compute_target_policy_reanalyzed(policy_re_context, policy._target_model)
        batch_target_policies_non_re = self._compute_target_policy_non_reanalyzed(
            policy_non_re_context, self._cfg.model.action_space_size
        )

        if 0 < self._cfg.reanalyze_ratio < 1:
            batch_target_policies = np.concatenate([batch_target_policies_re, batch_target_policies_non_re])
        elif self._cfg.reanalyze_ratio == 1:
            batch_target_policies = batch_target_policies_re
        elif self._cfg.reanalyze_ratio == 0:
            batch_target_policies = batch_target_policies_non_re

        target_batch = [batch_value_prefixs, batch_target_values, batch_target_policies]
        # a batch contains the current_batch and the target_batch
        train_data = [current_batch, target_batch]
        return train_data

    def _prepare_reward_value_context(
            self, batch_index_list: List[str], game_segment_list: List[Any], pos_in_game_segment_list: List[Any],
            total_transitions: int
    ) -> List[Any]:
        """
        Overview:
            prepare the context of rewards and values for calculating TD value target in reanalyzing part.
        Arguments:
            - batch_index_list (:obj:`list`): the index of start transition of sampled minibatch in replay buffer
            - game_segment_list (:obj:`list`): list of game segments
            - pos_in_game_segment_list (:obj:`list`): list of transition index in game_segment
            - total_transitions (:obj:`int`): number of collected transitions
        Returns:
            - reward_value_context (:obj:`list`): value_obs_list, value_mask, pos_in_game_segment_list, rewards_list, game_segment_lens,
              td_steps_list, action_mask_segment, to_play_segment
        """
        zero_obs = game_segment_list[0].zero_obs()
        value_obs_list = []
        # the value is valid or not (out of trajectory)
        value_mask = []
        rewards_list = []
        game_segment_lens = []
        # for two_player board games
        action_mask_segment, to_play_segment = [], []

        td_steps_list = []
        for game_segment, state_index, idx in zip(game_segment_list, pos_in_game_segment_list, batch_index_list):
            game_segment_len = len(game_segment)
            game_segment_lens.append(game_segment_len)

            # ==============================================================
            # EfficientZero related core code
            # ==============================================================
            # TODO(pu):
            # for atari, off-policy correction: shorter horizon of td steps
            # delta_td = (total_transitions - idx) // config.auto_td_steps
            # td_steps = config.td_steps - delta_td
            # td_steps = np.clip(td_steps, 1, 5).astype(np.int)
            td_steps = np.clip(self._cfg.td_steps, 1, max(1, game_segment_len - state_index)).astype(np.int32)

            # prepare the corresponding observations for bootstrapped values o_{t+k}
            # o[t+ td_steps, t + td_steps + stack frames + num_unroll_steps]
            # t=2+3 -> o[2+3, 2+3+4+5] -> o[5, 14]
            game_obs = game_segment.get_unroll_obs(state_index + td_steps, self._cfg.num_unroll_steps)

            rewards_list.append(game_segment.reward_segment)

            # for two_player board games
            action_mask_segment.append(game_segment.action_mask_segment)
            to_play_segment.append(game_segment.to_play_segment)

            for current_index in range(state_index, state_index + self._cfg.num_unroll_steps + 1):
                # get the <num_unroll_steps+1>  bootstrapped target obs
                td_steps_list.append(td_steps)
                # index of bootstrapped obs o_{t+td_steps}
                bootstrap_index = current_index + td_steps

                if bootstrap_index < game_segment_len:
                    value_mask.append(1)
                    # beg_index = bootstrap_index - (state_index + td_steps), max of beg_index is num_unroll_steps
                    beg_index = current_index - state_index
                    end_index = beg_index + self._cfg.model.frame_stack_num
                    # the stacked obs in time t
                    obs = game_obs[beg_index:end_index]
                else:
                    value_mask.append(0)
                    obs = zero_obs

                value_obs_list.append(obs)

        reward_value_context = [
            value_obs_list, value_mask, pos_in_game_segment_list, rewards_list, game_segment_lens, td_steps_list,
            action_mask_segment, to_play_segment
        ]
        return reward_value_context

    def _compute_target_reward_value(self, reward_value_context: List[Any], model: Any) -> List[np.ndarray]:
        """
        Overview:
            prepare reward and value targets from the context of rewards and values.
        Arguments:
            - reward_value_context (:obj:'list'): the reward value context
            - model (:obj:'torch.tensor'):model of the target model
        Returns:
            - batch_value_prefixs (:obj:'np.ndarray): batch of value prefix
            - batch_target_values (:obj:'np.ndarray): batch of value estimation
        """
        value_obs_list, value_mask, pos_in_game_segment_list, rewards_list, game_segment_lens, td_steps_list, action_mask_segment, \
        to_play_segment = reward_value_context  # noqa
        # transition_batch_size = game_segment_batch_size * (num_unroll_steps+1)
        transition_batch_size = len(value_obs_list)
        game_segment_batch_size = len(pos_in_game_segment_list)

        to_play, action_mask = self._preprocess_to_play_and_action_mask(
            game_segment_batch_size, to_play_segment, action_mask_segment, pos_in_game_segment_list
        )

        legal_actions = [[i for i, x in enumerate(action_mask[j]) if x == 1] for j in range(transition_batch_size)]

        # ==============================================================
        # EfficientZero related core code
        # ==============================================================
        batch_target_values, batch_value_prefixs = [], []
        with torch.no_grad():
            value_obs_list = prepare_observation(value_obs_list, self._cfg.model.model_type)
            # split a full batch into slices of mini_infer_size: to save the GPU memory for more GPU actors
            slices = int(np.ceil(transition_batch_size / self._cfg.mini_infer_size))
            network_output = []
            for i in range(slices):
                beg_index = self._cfg.mini_infer_size * i
                end_index = self._cfg.mini_infer_size * (i + 1)

                m_obs = torch.from_numpy(value_obs_list[beg_index:end_index]).to(self._cfg.device).float()

                # calculate the target value
                m_output = model.initial_inference(m_obs)
                if not model.training:
                    # ==============================================================
                    # EfficientZero related core code
                    # ==============================================================
                    # if not in training, obtain the scalars of the value/reward
                    [m_output.latent_state, m_output.value, m_output.policy_logits] = to_detach_cpu_numpy(
                        [
                            m_output.latent_state,
                            inverse_scalar_transform(m_output.value, self._cfg.model.support_scale),
                            m_output.policy_logits
                        ]
                    )
                    m_output.reward_hidden_state = (
                        m_output.reward_hidden_state[0].detach().cpu().numpy(),
                        m_output.reward_hidden_state[1].detach().cpu().numpy()
                    )
                network_output.append(m_output)

            # concat the output slices after model inference
            if self._cfg.use_root_value:
                # use the root values from MCTS, as in EfficiientZero
                # the root values have limited improvement but require much more GPU actors;
                _, value_prefix_pool, policy_logits_pool, latent_state_roots, reward_hidden_state_roots = concat_output(
                    network_output, data_type='efficientzero'
                )
                value_prefix_pool = value_prefix_pool.squeeze().tolist()
                policy_logits_pool = policy_logits_pool.tolist()
                noises = [
                    np.random.dirichlet([self._cfg.root_dirichlet_alpha] * self._cfg.model.action_space_size
                                        ).astype(np.float32).tolist() for _ in range(transition_batch_size)
                ]
                if self._cfg.mcts_ctree:
                    # cpp mcts_tree
                    roots = MCTSCtree.roots(transition_batch_size, legal_actions)
                    roots.prepare(self._cfg.root_noise_weight, noises, value_prefix_pool, policy_logits_pool, to_play)
                    # do MCTS for a new policy with the recent target model
                    MCTSCtree(self._cfg).search(roots, model, latent_state_roots, reward_hidden_state_roots, to_play)
                else:
                    # python mcts_tree
                    roots = MCTSPtree.roots(transition_batch_size, legal_actions)
                    roots.prepare(self._cfg.root_noise_weight, noises, value_prefix_pool, policy_logits_pool, to_play)
                    # do MCTS for a new policy with the recent target model
                    MCTSPtree(self._cfg).search(
                        roots, model, latent_state_roots, reward_hidden_state_roots, to_play=to_play
                    )
                roots_values = roots.get_values()
                value_list = np.array(roots_values)
            else:
                # use the predicted values
                value_list = concat_output_value(network_output)

            # get last state value
            if self._cfg.env_type == 'board_games' and to_play_segment[0][0] in [1, 2]:
                # TODO(pu): for board_games, very important, to check
                value_list = value_list.reshape(-1) * np.array(
                    [
                        self._cfg.discount_factor ** td_steps_list[i] if int(td_steps_list[i]) %
                        2 == 0 else -self._cfg.discount_factor ** td_steps_list[i]
                        for i in range(transition_batch_size)
                    ]
                )
            else:
                value_list = value_list.reshape(-1) * (
                    np.array([self._cfg.discount_factor for _ in range(transition_batch_size)]) ** td_steps_list
                )

            value_list = value_list * np.array(value_mask)
            value_list = value_list.tolist()
            horizon_id, value_index = 0, 0
            for game_segment_len_non_re, reward_list, state_index, to_play_list in zip(game_segment_lens, rewards_list,
                                                                                       pos_in_game_segment_list,
                                                                                       to_play_segment):
                target_values = []
                target_value_prefixs = []
                value_prefix = 0.0
                base_index = state_index
                for current_index in range(state_index, state_index + self._cfg.num_unroll_steps + 1):
                    bootstrap_index = current_index + td_steps_list[value_index]
                    for i, reward in enumerate(reward_list[current_index:bootstrap_index]):
                        if self._cfg.env_type == 'board_games' and to_play_segment[0][0] in [1, 2]:
                            # TODO(pu): for board_games, very important, to check
                            if to_play_list[base_index] == to_play_list[i]:
                                value_list[value_index] += reward * self._cfg.discount_factor ** i
                            else:
                                value_list[value_index] += -reward * self._cfg.discount_factor ** i
                        else:
                            value_list[value_index] += reward * self._cfg.discount_factor ** i

                    # reset every lstm_horizon_len
                    if horizon_id % self._cfg.lstm_horizon_len == 0:
                        value_prefix = 0.0
                        base_index = current_index
                    horizon_id += 1

                    if current_index < game_segment_len_non_re:
                        target_values.append(value_list[value_index])
                        # TODO: Since the horizon is small and the discount_factor is close to 1.
                        # Compute the reward sum to approximate the value prefix for simplification
                        value_prefix += reward_list[current_index
                                                    ]  # * self._cfg.discount_factor ** (current_index - base_index)
                        target_value_prefixs.append(value_prefix)
                    else:
                        target_values.append(0)
                        target_value_prefixs.append(value_prefix)
                    value_index += 1
                batch_value_prefixs.append(target_value_prefixs)
                batch_target_values.append(target_values)
        batch_value_prefixs = np.asarray(batch_value_prefixs, dtype=object)
        batch_target_values = np.asarray(batch_target_values, dtype=object)

        return batch_value_prefixs, batch_target_values

    def _compute_target_policy_reanalyzed(self, policy_re_context: List[Any], model: Any) -> np.ndarray:
        """
        Overview:
            prepare policy targets from the reanalyzed context of policies
        Arguments:
            - policy_re_context (:obj:`List`): List of policy context to reanalyzed
        Returns:
            - batch_target_policies_re
        """
        if policy_re_context is None:
            return []
        batch_target_policies_re = []

        policy_obs_list, policy_mask, pos_in_game_segment_list, batch_index_list, child_visits, game_segment_lens, action_mask_segment, \
        to_play_segment = policy_re_context  # noqa
        # transition_batch_size = game_segment_batch_size * (self._cfg.num_unroll_steps + 1)
        transition_batch_size = len(policy_obs_list)
        game_segment_batch_size = len(pos_in_game_segment_list)
        to_play, action_mask = self._preprocess_to_play_and_action_mask(
            game_segment_batch_size, to_play_segment, action_mask_segment, pos_in_game_segment_list
        )

        legal_actions = [[i for i, x in enumerate(action_mask[j]) if x == 1] for j in range(transition_batch_size)]
        with torch.no_grad():
            policy_obs_list = prepare_observation(policy_obs_list, self._cfg.model.model_type)
            # split a full batch into slices of mini_infer_size: to save the GPU memory for more GPU actors
            slices = int(np.ceil(transition_batch_size / self._cfg.mini_infer_size))
            network_output = []
            for i in range(slices):
                beg_index = self._cfg.mini_infer_size * i
                end_index = self._cfg.mini_infer_size * (i + 1)
                m_obs = torch.from_numpy(policy_obs_list[beg_index:end_index]).to(self._cfg.device).float()

                m_output = model.initial_inference(m_obs)

                if not model.training:
                    # if not in training, obtain the scalars of the value/reward
                    [m_output.latent_state, m_output.value, m_output.policy_logits] = to_detach_cpu_numpy(
                        [
                            m_output.latent_state,
                            inverse_scalar_transform(m_output.value, self._cfg.model.support_scale),
                            m_output.policy_logits
                        ]
                    )
                    m_output.reward_hidden_state = (
                        m_output.reward_hidden_state[0].detach().cpu().numpy(),
                        m_output.reward_hidden_state[1].detach().cpu().numpy()
                    )

                network_output.append(m_output)

            _, value_prefix_pool, policy_logits_pool, latent_state_roots, reward_hidden_state_roots = concat_output(
                network_output, data_type='efficientzero'
            )
            value_prefix_pool = value_prefix_pool.squeeze().tolist()
            policy_logits_pool = policy_logits_pool.tolist()
            noises = [
                np.random.dirichlet([self._cfg.root_dirichlet_alpha] * self._cfg.model.action_space_size
                                    ).astype(np.float32).tolist() for _ in range(transition_batch_size)
            ]
            if self._cfg.mcts_ctree:
                # cpp mcts_tree
                roots = MCTSCtree.roots(transition_batch_size, legal_actions)
                roots.prepare(self._cfg.root_noise_weight, noises, value_prefix_pool, policy_logits_pool, to_play)
                # do MCTS for a new policy with the recent target model
                MCTSCtree(self._cfg).search(roots, model, latent_state_roots, reward_hidden_state_roots, to_play)
            else:
                # python mcts_tree
                roots = MCTSPtree.roots(transition_batch_size, legal_actions)
                roots.prepare(self._cfg.root_noise_weight, noises, value_prefix_pool, policy_logits_pool, to_play)
                # do MCTS for a new policy with the recent target model
                MCTSPtree(self._cfg).search(
                    roots, model, latent_state_roots, reward_hidden_state_roots, to_play=to_play
                )

            roots_legal_actions_list = legal_actions
            roots_distributions = roots.get_distributions()
            policy_index = 0
            for state_index, game_index in zip(pos_in_game_segment_list, batch_index_list):
                target_policies = []
                for current_index in range(state_index, state_index + self._cfg.num_unroll_steps + 1):
                    distributions = roots_distributions[policy_index]
                    if policy_mask[policy_index] == 0:
                        # NOTE: the invalid padding target policy, O is to make sure the correspoding cross_entropy_loss=0
                        target_policies.append([0 for _ in range(self._cfg.model.action_space_size)])
                    else:
                        if distributions is None:
                            # if at some obs, the legal_action is None, add the fake target_policy
                            target_policies.append(
                                list(np.ones(self._cfg.model.action_space_size) / self._cfg.model.action_space_size)
                            )
                        else:
                            if self._cfg.mcts_ctree:
                                # cpp mcts_tree
                                if self._cfg.action_type == 'fixed_action_space':
                                    sum_visits = sum(distributions)
                                    policy = [visit_count / sum_visits for visit_count in distributions]
                                    target_policies.append(policy)
                                else:
                                    # for two_player board games
                                    policy_tmp = [0 for _ in range(self._cfg.model.action_space_size)]
                                    # to make sure target_policies have the same dimension
                                    sum_visits = sum(distributions)
                                    policy = [visit_count / sum_visits for visit_count in distributions]
                                    for index, legal_action in enumerate(roots_legal_actions_list[policy_index]):
                                        policy_tmp[legal_action] = policy[index]
                                    target_policies.append(policy_tmp)
                            else:
                                # python mcts_tree
                                if self._cfg.action_type == 'fixed_action_space':
                                    sum_visits = sum(distributions)
                                    policy = [visit_count / sum_visits for visit_count in distributions]
                                    target_policies.append(policy)
                                else:
                                    # for two_player board games
                                    policy_tmp = [0 for _ in range(self._cfg.model.action_space_size)]
                                    # to make sure target_policies have the same dimension
                                    sum_visits = sum(distributions)
                                    policy = [visit_count / sum_visits for visit_count in distributions]
                                    for index, legal_action in enumerate(roots_legal_actions_list[policy_index]):
                                        policy_tmp[legal_action] = policy[index]
                                    target_policies.append(policy_tmp)
                    policy_index += 1
                batch_target_policies_re.append(target_policies)
        batch_target_policies_re = np.array(batch_target_policies_re)
        return batch_target_policies_re