File size: 8,182 Bytes
079c32c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
from typing import Any, Tuple, List

import numpy as np
from ding.utils import BUFFER_REGISTRY

from lzero.mcts.utils import prepare_observation
from .game_buffer_muzero import MuZeroGameBuffer


@BUFFER_REGISTRY.register('game_buffer_stochastic_muzero')
class StochasticMuZeroGameBuffer(MuZeroGameBuffer):
    """
    Overview:
        The specific game buffer for Stochastic MuZero policy.
    """

    def __init__(self, cfg: dict):
        super().__init__(cfg)
        """
        Overview:
            Use the default configuration mechanism. If a user passes in a cfg with a key that matches an existing key
            in the default configuration, the user-provided value will override the default configuration. Otherwise,
            the default configuration will be used.
        """
        default_config = self.default_config()
        default_config.update(cfg)
        self._cfg = default_config
        assert self._cfg.env_type in ['not_board_games', 'board_games']
        assert self._cfg.action_type in ['fixed_action_space', 'varied_action_space']
        self.replay_buffer_size = self._cfg.replay_buffer_size
        self.batch_size = self._cfg.batch_size
        self._alpha = self._cfg.priority_prob_alpha
        self._beta = self._cfg.priority_prob_beta

        self.keep_ratio = 1
        self.model_update_interval = 10
        self.num_of_collected_episodes = 0
        self.base_idx = 0
        self.clear_time = 0

        self.game_segment_buffer = []
        self.game_pos_priorities = []
        self.game_segment_game_pos_look_up = []

    def _make_batch(self, batch_size: int, reanalyze_ratio: float) -> Tuple[Any]:
        """
        Overview:
            first sample orig_data through ``_sample_orig_data()``,
            then prepare the context of a batch:
                reward_value_context:        the context of reanalyzed value targets
                policy_re_context:           the context of reanalyzed policy targets
                policy_non_re_context:       the context of non-reanalyzed policy targets
                current_batch:                the inputs of batch
        Arguments:
            - batch_size (:obj:`int`): the batch size of orig_data from replay buffer.
            - reanalyze_ratio (:obj:`float`): ratio of reanalyzed policy (value is 100% reanalyzed)
        Returns:
            - context (:obj:`Tuple`): reward_value_context, policy_re_context, policy_non_re_context, current_batch
        """
        # obtain the batch context from replay buffer
        orig_data = self._sample_orig_data(batch_size)
        game_segment_list, pos_in_game_segment_list, batch_index_list, weights_list, make_time_list = orig_data
        batch_size = len(batch_index_list)
        obs_list, action_list, mask_list = [], [], []
        if self._cfg.use_ture_chance_label_in_chance_encoder:
            chance_list = []
        # prepare the inputs of a batch
        for i in range(batch_size):
            game = game_segment_list[i]
            pos_in_game_segment = pos_in_game_segment_list[i]

            actions_tmp = game.action_segment[pos_in_game_segment:pos_in_game_segment +
                                                                  self._cfg.num_unroll_steps].tolist()
            if self._cfg.use_ture_chance_label_in_chance_encoder:
                chances_tmp = game.chance_segment[1 + pos_in_game_segment:1 + pos_in_game_segment +
                                                                          self._cfg.num_unroll_steps].tolist()
            # add mask for invalid actions (out of trajectory)
            mask_tmp = [1. for i in range(len(actions_tmp))]
            mask_tmp += [0. for _ in range(self._cfg.num_unroll_steps - len(mask_tmp))]

            # pad random action
            actions_tmp += [
                np.random.randint(0, game.action_space_size)
                for _ in range(self._cfg.num_unroll_steps - len(actions_tmp))
            ]
            if self._cfg.use_ture_chance_label_in_chance_encoder:
                chances_tmp += [
                    np.random.randint(0, game.action_space_size)
                    for _ in range(self._cfg.num_unroll_steps - len(chances_tmp))
                ]
            # obtain the input observations
            # pad if length of obs in game_segment is less than stack+num_unroll_steps
            # e.g. stack+num_unroll_steps  4+5
            obs_list.append(
                game_segment_list[i].get_unroll_obs(
                    pos_in_game_segment_list[i], num_unroll_steps=self._cfg.num_unroll_steps, padding=True
                )
            )
            action_list.append(actions_tmp)
            mask_list.append(mask_tmp)
            if self._cfg.use_ture_chance_label_in_chance_encoder:
                chance_list.append(chances_tmp)

        # formalize the input observations
        obs_list = prepare_observation(obs_list, self._cfg.model.model_type)

        # formalize the inputs of a batch
        if self._cfg.use_ture_chance_label_in_chance_encoder:
            current_batch = [obs_list, action_list, mask_list, batch_index_list, weights_list, make_time_list,
                             chance_list]
        else:
            current_batch = [obs_list, action_list, mask_list, batch_index_list, weights_list, make_time_list]
        for i in range(len(current_batch)):
            current_batch[i] = np.asarray(current_batch[i])

        total_transitions = self.get_num_of_transitions()

        # obtain the context of value targets
        reward_value_context = self._prepare_reward_value_context(
            batch_index_list, game_segment_list, pos_in_game_segment_list, total_transitions
        )
        """
        only reanalyze recent reanalyze_ratio (e.g. 50%) data
        if self._cfg.reanalyze_outdated is True, batch_index_list is sorted according to its generated env_steps
        0: reanalyze_num -> reanalyzed policy, reanalyze_num:end -> non reanalyzed policy
        """
        reanalyze_num = int(batch_size * reanalyze_ratio)
        # reanalyzed policy
        if reanalyze_num > 0:
            # obtain the context of reanalyzed policy targets
            policy_re_context = self._prepare_policy_reanalyzed_context(
                batch_index_list[:reanalyze_num], game_segment_list[:reanalyze_num],
                pos_in_game_segment_list[:reanalyze_num]
            )
        else:
            policy_re_context = None

        # non reanalyzed policy
        if reanalyze_num < batch_size:
            # obtain the context of non-reanalyzed policy targets
            policy_non_re_context = self._prepare_policy_non_reanalyzed_context(
                batch_index_list[reanalyze_num:], game_segment_list[reanalyze_num:],
                pos_in_game_segment_list[reanalyze_num:]
            )
        else:
            policy_non_re_context = None

        context = reward_value_context, policy_re_context, policy_non_re_context, current_batch
        return context

    def update_priority(self, train_data: List[np.ndarray], batch_priorities: Any) -> None:
        """
        Overview:
            Update the priority of training data.
        Arguments:
            - train_data (:obj:`Optional[List[Optional[np.ndarray]]]`): training data to be updated priority.
            - batch_priorities (:obj:`batch_priorities`): priorities to update to.
        NOTE:
            train_data = [current_batch, target_batch]
            if self._cfg.use_ture_chance_label_in_chance_encoder:
                obs_batch_orig, action_batch, mask_batch, indices, weights, make_time, chance_batch = current_batch
            else:
                obs_batch_orig, action_batch, mask_batch, indices, weights, make_time = current_batch

        """
        indices = train_data[0][3]
        metas = {'make_time': train_data[0][5], 'batch_priorities': batch_priorities}
        # only update the priorities for data still in replay buffer
        for i in range(len(indices)):
            if metas['make_time'][i] > self.clear_time:
                idx, prio = indices[i], metas['batch_priorities'][i]
                self.game_pos_priorities[idx] = prio