File size: 14,991 Bytes
079c32c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
import torch
from easydict import EasyDict
from lzero.policy import inverse_scalar_transform, select_action
import numpy as np
import random

from lzero.mcts.tree_search.mcts_ptree import EfficientZeroMCTSPtree as MCTSPtree
from lzero.mcts.tree_search.mcts_ctree import EfficientZeroMCTSCtree as MCTSCtree
import time


class MuZeroModelFake(torch.nn.Module):
    """
    Overview:
        Fake MuZero model just for test EfficientZeroMCTSPtree.
    Interfaces:
        __init__, initial_inference, recurrent_inference
    """

    def __init__(self, action_num):
        super().__init__()
        self.action_num = action_num

    def initial_inference(self, observation):
        encoded_state = observation
        batch_size = encoded_state.shape[0]

        value = torch.zeros(size=(batch_size, 601))
        value_prefix = [0. for _ in range(batch_size)]
        policy_logits = torch.zeros(size=(batch_size, self.action_num))
        latent_state = torch.zeros(size=(batch_size, 12, 3, 3))
        reward_hidden_state_state = (torch.zeros(size=(1, batch_size, 16)), torch.zeros(size=(1, batch_size, 16)))

        output = {
            'searched_value': value,
            'value_prefix': value_prefix,
            'policy_logits': policy_logits,
            'latent_state': latent_state,
            'reward_hidden_state': reward_hidden_state_state
        }

        return EasyDict(output)

    def recurrent_inference(self, hidden_states, reward_hidden_states, actions):
        batch_size = hidden_states.shape[0]
        latent_state = torch.zeros(size=(batch_size, 12, 3, 3))
        reward_hidden_state_state = (torch.zeros(size=(1, batch_size, 16)), torch.zeros(size=(1, batch_size, 16)))
        value = torch.zeros(size=(batch_size, 601))
        value_prefix = torch.zeros(size=(batch_size, 601))
        policy_logits = torch.zeros(size=(batch_size, self.action_num))

        output = {
            'searched_value': value,
            'value_prefix': value_prefix,
            'policy_logits': policy_logits,
            'latent_state': latent_state,
            'reward_hidden_state': reward_hidden_state_state
        }

        return EasyDict(output)


def ptree_func(policy_config, num_simulations):
    """
        Overview:
            Search on the tree of the Python implementation and record the time spent at different stages.
        Arguments:
            - policy_config: config of game.
            - num_simulations: Number of simulations.
        Returns:
            - build_time: Type builds take time.
            - prepare_time: time for prepare.
            - search_time.
            - total_time.
        """
    batch_size = env_nums = policy_config.batch_size
    action_space_size = policy_config.action_space_size

    build_time = []
    prepare_time = []
    search_time = []
    total_time = []

    for n_s in num_simulations:
        t0 = time.time()
        model = MuZeroModelFake(action_num=action_space_size)
        stack_obs = torch.zeros(
            size=(
                batch_size,
                n_s,
            ), dtype=torch.float
        )

        policy_config.num_simulations = n_s
        network_output = model.initial_inference(stack_obs.float())

        latent_state_roots = network_output['latent_state']
        reward_hidden_state_state = network_output['reward_hidden_state']
        pred_values_pool = network_output['value']
        value_prefix_pool = network_output['value_prefix']
        policy_logits_pool = network_output['policy_logits']

        # network output process
        pred_values_pool = inverse_scalar_transform(pred_values_pool,
                                                    policy_config.model.support_scale).detach().cpu().numpy()
        latent_state_roots = latent_state_roots.detach().cpu().numpy()
        reward_hidden_state_state = (
            reward_hidden_state_state[0].detach().cpu().numpy(), reward_hidden_state_state[1].detach().cpu().numpy()
        )
        policy_logits_pool = policy_logits_pool.detach().cpu().numpy().tolist()

        action_mask = [[random.randint(0, 1) for _ in range(action_space_size)] for _ in range(env_nums)]
        assert len(action_mask) == batch_size
        assert len(action_mask[0]) == action_space_size

        action_num = [int(np.array(action_mask[i]).sum()) for i in range(env_nums)]
        legal_actions_list = [[i for i, x in enumerate(action_mask[j]) if x == 1] for j in range(env_nums)]
        to_play = [np.random.randint(1, 3) for i in range(env_nums)]
        assert len(to_play) == batch_size
        # ============================================ptree=====================================#
        for i in range(env_nums):
            assert action_num[i] == len(legal_actions_list[i])
        t1 = time.time()
        roots = MCTSPtree.roots(env_nums, legal_actions_list)
        build_time.append(time.time() - t1)
        noises = [
            np.random.dirichlet([policy_config.root_dirichlet_alpha] * int(sum(action_mask[j]))
                                ).astype(np.float32).tolist() for j in range(env_nums)
        ]
        t1 = time.time()
        roots.prepare(policy_config.root_noise_weight, noises, value_prefix_pool, policy_logits_pool, to_play)
        prepare_time.append(time.time() - t1)
        t1 = time.time()
        MCTSPtree(policy_config).search(roots, model, latent_state_roots, reward_hidden_state_state, to_play)
        search_time.append(time.time() - t1)
        total_time.append(time.time() - t0)
        roots_distributions = roots.get_distributions()
        roots_values = roots.get_values()
        assert len(roots_values) == env_nums
        assert len(roots_values) == env_nums
        for i in range(env_nums):
            assert len(roots_distributions[i]) == action_num[i]

        temperature = [1 for _ in range(env_nums)]
        for i in range(env_nums):
            distributions = roots_distributions[i]
            action_index, visit_count_distribution_entropy = select_action(
                distributions, temperature=temperature[i], deterministic=False
            )
            action = np.where(np.array(action_mask[i]) == 1.0)[0][action_index]
            assert action_index < action_num[i]
            assert action == legal_actions_list[i][action_index]
            print('\n action_index={}, legal_action={}, action={}'.format(action_index, legal_actions_list[i], action))
    return build_time, prepare_time, search_time, total_time


def ctree_func(policy_config, num_simulations):
    """
        Overview:
            Search on the tree of the C++ implementation and record the time spent at different stages.
        Arguments:
            - policy_config: config of game.
            - num_simulations: Number of simulations.
        Returns:
            - build_time: Type builds take time.
            - prepare_time: time for prepare.
            - search_time.
            - total_time.
        """
    batch_size = env_nums = policy_config.batch_size
    action_space_size = policy_config.action_space_size

    build_time = []
    prepare_time = []
    search_time = []
    total_time = []

    for n_s in num_simulations:
        t0 = time.time()
        model = MuZeroModelFake(action_num=action_space_size)
        stack_obs = torch.zeros(
            size=(
                batch_size,
                n_s,
            ), dtype=torch.float
        )
        policy_config.num_simulations = n_s

        network_output = model.initial_inference(stack_obs.float())

        latent_state_roots = network_output['latent_state']
        reward_hidden_state_state = network_output['reward_hidden_state']
        pred_values_pool = network_output['value']
        value_prefix_pool = network_output['value_prefix']
        policy_logits_pool = network_output['policy_logits']

        # network output process
        pred_values_pool = inverse_scalar_transform(pred_values_pool,
                                                    policy_config.model.support_scale).detach().cpu().numpy()
        latent_state_roots = latent_state_roots.detach().cpu().numpy()
        reward_hidden_state_state = (
            reward_hidden_state_state[0].detach().cpu().numpy(), reward_hidden_state_state[1].detach().cpu().numpy()
        )
        policy_logits_pool = policy_logits_pool.detach().cpu().numpy().tolist()

        action_mask = [[random.randint(0, 1) for _ in range(action_space_size)] for _ in range(env_nums)]
        assert len(action_mask) == batch_size
        assert len(action_mask[0]) == action_space_size

        action_num = [int(np.array(action_mask[i]).sum()) for i in range(env_nums)]
        legal_actions_list = [[i for i, x in enumerate(action_mask[j]) if x == 1] for j in range(env_nums)]
        to_play = [np.random.randint(1, 3) for i in range(env_nums)]
        assert len(to_play) == batch_size
        # ============================================ctree=====================================#
        for i in range(env_nums):
            assert action_num[i] == len(legal_actions_list[i])

        t1 = time.time()
        roots = MCTSCtree.roots(env_nums, legal_actions_list)
        build_time.append(time.time() - t1)
        noises = [
            np.random.dirichlet([policy_config.root_dirichlet_alpha] * int(sum(action_mask[j]))
                                ).astype(np.float32).tolist() for j in range(env_nums)
        ]
        t1 = time.time()
        roots.prepare(policy_config.root_noise_weight, noises, value_prefix_pool, policy_logits_pool, to_play)
        prepare_time.append(time.time() - t1)
        t1 = time.time()
        MCTSCtree(policy_config).search(roots, model, latent_state_roots, reward_hidden_state_state, to_play)
        search_time.append(time.time() - t1)
        total_time.append(time.time() - t0)
        roots_distributions = roots.get_distributions()
        roots_values = roots.get_values()
        assert len(roots_values) == env_nums
        assert len(roots_values) == env_nums
        for i in range(env_nums):
            assert len(roots_distributions[i]) == action_num[i]

        temperature = [1 for _ in range(env_nums)]
        for i in range(env_nums):
            distributions = roots_distributions[i]
            action_index, visit_count_distribution_entropy = select_action(
                distributions, temperature=temperature[i], deterministic=False
            )
            action = np.where(np.array(action_mask[i]) == 1.0)[0][action_index]
            assert action_index < action_num[i]
            assert action == legal_actions_list[i][action_index]
            print('\n action_index={}, legal_action={}, action={}'.format(action_index, legal_actions_list[i], action))
    return build_time, prepare_time, search_time, total_time


def plot(ctree_time, ptree_time, iters, label):
    import numpy as np
    import matplotlib.pyplot as plt
    from matplotlib import pyplot
    plt.style.use('seaborn-whitegrid')
    palette = pyplot.get_cmap('Set1')
    font1 = {
        'family': 'Times New Roman',
        'weight': 'normal',
        'size': 18,
    }

    plt.figure(figsize=(20, 10))
    # ctree
    color = palette(0)
    avg = np.mean(ctree_time, axis=0)
    std = np.std(ctree_time, axis=0)
    r1 = list(map(lambda x: x[0] - x[1], zip(avg, std)))
    r2 = list(map(lambda x: x[0] + x[1], zip(avg, std)))
    plt.plot(iters, avg, color=color, label="ctree", linewidth=3.0)
    plt.fill_between(iters, r1, r2, color=color, alpha=0.2)

    # ptree
    ptree_time = np.array(ptree_time)
    color = palette(1)
    avg = np.mean(ptree_time, axis=0)
    std = np.std(ptree_time, axis=0)
    r1 = list(map(lambda x: x[0] - x[1], zip(avg, std)))
    r2 = list(map(lambda x: x[0] + x[1], zip(avg, std)))
    plt.plot(iters, avg, color=color, label="ptree", linewidth=3.0)
    plt.fill_between(iters, r1, r2, color=color, alpha=0.2)

    plt.legend(loc='lower right', prop=font1)
    plt.title('{}'.format(label))
    plt.xlabel('simulations', fontsize=22)
    plt.ylabel('time', fontsize=22)
    plt.savefig('{}-time.png'.format(label))


if __name__ == "__main__":

    # cProfile.run("ctree_func()", filename="ctree_result.out", sort="cumulative")
    # cProfile.run("ptree_func()", filename="ptree_result.out", sort="cumulative")

    policy_config = EasyDict(
        dict(
            lstm_horizon_len=5,
            model=dict(
                support_scale=300,
                categorical_distribution=True,
            ),
            action_space_size=100,
            num_simulations=100,
            batch_size=512,
            pb_c_base=1,
            pb_c_init=1,
            discount_factor=0.9,
            root_dirichlet_alpha=0.3,
            root_noise_weight=0.2,
            dirichlet_alpha=0.3,
            exploration_fraction=1,
            device='cpu',
            value_delta_max=0.01,
        )
    )

    ACTION_SPCAE_SIZE = [16, 50]
    BATCH_SIZE = [8, 64, 512]
    NUM_SIMULATIONS = [i for i in range(20, 200, 20)]

    # ACTION_SPCAE_SIZE = [50]
    # BATCH_SIZE = [512]
    # NUM_SIMULATIONS =  [i for i in range(10, 50, 10)]

    for action_space_size in ACTION_SPCAE_SIZE:
        for batch_size in BATCH_SIZE:
            policy_config.batch_size = batch_size
            policy_config.action_space_size = action_space_size
            ctree_build_time = []
            ctree_prepare_time = []
            ctree_search_time = []
            ptree_build_time = []
            ptree_prepare_time = []
            ptree_search_time = []
            ctree_total_time = []
            ptree_total_time = []
            num_simulations = NUM_SIMULATIONS
            for i in range(3):
                build_time, prepare_time, search_time, total_time = ctree_func(
                    policy_config, num_simulations=num_simulations
                )
                ctree_build_time.append(build_time)
                ctree_prepare_time.append(prepare_time)
                ctree_search_time.append(search_time)
                ctree_total_time.append(total_time)

            for i in range(3):
                build_time, prepare_time, search_time, total_time = ptree_func(
                    policy_config, num_simulations=num_simulations
                )
                ptree_build_time.append(build_time)
                ptree_prepare_time.append(prepare_time)
                ptree_search_time.append(search_time)
                ptree_total_time.append(total_time)
            label = 'action_space_size_{}_batch_size_{}'.format(action_space_size, batch_size)
            plot(ctree_build_time, ptree_build_time, iters=num_simulations, label=label + '_bulid_time')
            plot(ctree_prepare_time, ptree_prepare_time, iters=num_simulations, label=label + '_prepare_time')
            plot(ctree_search_time, ptree_search_time, iters=num_simulations, label=label + '_search_time')
            plot(ctree_total_time, ptree_total_time, iters=num_simulations, label=label + '_total_time')