File size: 17,173 Bytes
079c32c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 |
"""
Overview:
BTW, users can refer to the unittest of these model templates to learn how to use them.
"""
from typing import Optional, Tuple
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from ding.model import ReparameterizationHead
from ding.torch_utils import MLP, ResBlock
from ding.utils import MODEL_REGISTRY, SequenceType
from .common import RepresentationNetwork
# use ModelRegistry to register the model, for more details about ModelRegistry, please refer to DI-engine's document.
@MODEL_REGISTRY.register('AlphaZeroModel')
class AlphaZeroModel(nn.Module):
def __init__(
self,
observation_shape: SequenceType = (12, 96, 96),
action_space_size: int = 6,
categorical_distribution: bool = False,
activation: Optional[nn.Module] = nn.ReLU(inplace=True),
representation_network: nn.Module = None,
last_linear_layer_init_zero: bool = True,
downsample: bool = False,
num_res_blocks: int = 1,
num_channels: int = 64,
value_head_channels: int = 16,
policy_head_channels: int = 16,
fc_value_layers: SequenceType = [32],
fc_policy_layers: SequenceType = [32],
value_support_size: int = 601,
# ==============================================================
# specific sampled related config
# ==============================================================
continuous_action_space: bool = False,
num_of_sampled_actions: int = 6,
sigma_type='conditioned',
fixed_sigma_value: float = 0.3,
bound_type: str = None,
norm_type: str = 'BN',
discrete_action_encoding_type: str = 'one_hot',
):
"""
Overview:
The definition of AlphaZero model, which is a general model for AlphaZero algorithm.
Arguments:
- observation_shape (:obj:`SequenceType`): Observation space shape, e.g. [C, W, H]=[24, 19, 19] for go.
- action_space_size: (:obj:`int`): Action space size, usually an integer number for discrete action space.
- categorical_distribution (:obj:`bool`): Whether to use discrete support to represent categorical \
distribution for value.
- activation (:obj:`Optional[nn.Module]`): Activation function used in network, which often use in-place \
operation to speedup, e.g. ReLU(inplace=True).
- representation_network (:obj:`nn.Module`): The user-defined representation_network. In some complex \
environment, we may need to define a customized representation_network.
- last_linear_layer_init_zero (:obj:`bool`): Whether to use zero initializationss for the last layer of \
value/policy mlp, default sets it to True.
- downsample (:obj:`bool`): Whether to do downsampling for observations in ``representation_network``, \
in board games, this argument is usually set to False.
- num_res_blocks (:obj:`int`): The number of res blocks in AlphaZero model.
- num_channels (:obj:`int`): The channels of hidden states.
- value_head_channels (:obj:`int`): The channels of value head.
- policy_head_channels (:obj:`int`): The channels of policy head.
- fc_value_layers (:obj:`SequenceType`): The number of hidden layers used in value head (MLP head).
- fc_policy_layers (:obj:`SequenceType`): The number of hidden layers used in policy head (MLP head).
- value_support_size (:obj:`int`): The size of categorical value.
"""
super(AlphaZeroModel, self).__init__()
self.categorical_distribution = categorical_distribution
self.observation_shape = observation_shape
if self.categorical_distribution:
self.value_support_size = value_support_size
else:
self.value_support_size = 1
self.last_linear_layer_init_zero = last_linear_layer_init_zero
self.representation_network = representation_network
self.continuous_action_space = continuous_action_space
self.action_space_size = action_space_size
# The dim of action space. For discrete action space, it's 1.
# For continuous action space, it is the dim of action.
self.action_space_dim = action_space_size if self.continuous_action_space else 1
assert discrete_action_encoding_type in ['one_hot', 'not_one_hot'], discrete_action_encoding_type
self.discrete_action_encoding_type = discrete_action_encoding_type
if self.continuous_action_space:
self.action_encoding_dim = action_space_size
else:
if self.discrete_action_encoding_type == 'one_hot':
self.action_encoding_dim = action_space_size
elif self.discrete_action_encoding_type == 'not_one_hot':
self.action_encoding_dim = 1
self.sigma_type = sigma_type
self.fixed_sigma_value = fixed_sigma_value
self.bound_type = bound_type
self.norm_type = norm_type
self.num_of_sampled_actions = num_of_sampled_actions
# TODO use more adaptive way to get the flatten output size
flatten_output_size_for_value_head = (
(
value_head_channels * math.ceil(self.observation_shape[1] / 16) *
math.ceil(self.observation_shape[2] / 16)
) if downsample else (value_head_channels * self.observation_shape[1] * self.observation_shape[2])
)
flatten_output_size_for_policy_head = (
(
policy_head_channels * math.ceil(self.observation_shape[1] / 16) *
math.ceil(self.observation_shape[2] / 16)
) if downsample else (policy_head_channels * self.observation_shape[1] * self.observation_shape[2])
)
self.prediction_network = PredictionNetwork(
action_space_size,
self.continuous_action_space,
num_res_blocks,
num_channels,
value_head_channels,
policy_head_channels,
fc_value_layers,
fc_policy_layers,
self.value_support_size,
flatten_output_size_for_value_head,
flatten_output_size_for_policy_head,
last_linear_layer_init_zero=self.last_linear_layer_init_zero,
activation=activation,
sigma_type=self.sigma_type,
fixed_sigma_value=self.fixed_sigma_value,
bound_type=self.bound_type,
norm_type=self.norm_type,
)
if self.representation_network is None:
self.representation_network = RepresentationNetwork(
self.observation_shape,
num_res_blocks,
num_channels,
downsample,
activation=activation,
)
else:
self.representation_network = self.representation_network
def forward(self, state_batch: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Overview:
The common computation graph of AlphaZero model.
Arguments:
- state_batch (:obj:`torch.Tensor`): The input state data, e.g. 2D image with the shape of [C, H, W].
Returns:
- logit (:obj:`torch.Tensor`): The output logit to select discrete action.
- value (:obj:`torch.Tensor`): The output value of input state to help policy improvement and evaluation.
Shapes:
- state_batch (:obj:`torch.Tensor`): :math:`(B, C, H, W)`, where B is batch size, C is channel, H is \
height, W is width.
- logit (:obj:`torch.Tensor`): :math:`(B, N)`, where B is batch size, N is action space size.
- value (:obj:`torch.Tensor`): :math:`(B, 1)`, where B is batch size.
"""
encoded_state = self.representation_network(state_batch)
logit, value = self.prediction_network(encoded_state)
return logit, value
def compute_policy_value(self, state_batch: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Overview:
The computation graph of AlphaZero model to calculate action selection probability and value.
Arguments:
- state_batch (:obj:`torch.Tensor`): The input state data, e.g. 2D image with the shape of [C, H, W].
Returns:
- prob (:obj:`torch.Tensor`): The output probability to select discrete action.
- value (:obj:`torch.Tensor`): The output value of input state to help policy improvement and evaluation.
Shapes:
- state_batch (:obj:`torch.Tensor`): :math:`(B, C, H, W)`, where B is batch size, C is channel, H is \
height, W is width.
- prob (:obj:`torch.Tensor`): :math:`(B, N)`, where B is batch size, N is action space size.
- value (:obj:`torch.Tensor`): :math:`(B, 1)`, where B is batch size.
"""
logit, value = self.forward(state_batch)
prob = torch.nn.functional.softmax(logit, dim=-1)
return prob, value
def compute_logp_value(self, state_batch: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Overview:
The computation graph of AlphaZero model to calculate log probability and value.
Arguments:
- state_batch (:obj:`torch.Tensor`): The input state data, e.g. 2D image with the shape of [C, H, W].
Returns:
- log_prob (:obj:`torch.Tensor`): The output log probability to select discrete action.
- value (:obj:`torch.Tensor`): The output value of input state to help policy improvement and evaluation.
Shapes:
- state_batch (:obj:`torch.Tensor`): :math:`(B, C, H, W)`, where B is batch size, C is channel, H is \
height, W is width.
- log_prob (:obj:`torch.Tensor`): :math:`(B, N)`, where B is batch size, N is action space size.
- value (:obj:`torch.Tensor`): :math:`(B, 1)`, where B is batch size.
"""
logit, value = self.forward(state_batch)
# use log_softmax to calculate log probability
log_prob = F.log_softmax(logit, dim=-1)
return log_prob, value
class PredictionNetwork(nn.Module):
def __init__(
self,
action_space_size: int,
continuous_action_space: bool,
num_res_blocks: int,
num_channels: int,
value_head_channels: int,
policy_head_channels: int,
fc_value_layers: SequenceType,
fc_policy_layers: SequenceType,
output_support_size: int,
flatten_output_size_for_value_head: int,
flatten_output_size_for_policy_head: int,
last_linear_layer_init_zero: bool = True,
activation: Optional[nn.Module] = nn.ReLU(inplace=True),
# ==============================================================
# specific sampled related config
# ==============================================================
sigma_type='conditioned',
fixed_sigma_value: float = 0.3,
bound_type: str = None,
norm_type: str = 'BN',
) -> None:
"""
Overview:
Prediction network. Predict the value and policy given the hidden state.
Arguments:
- action_space_size: (:obj:`int`): Action space size, usually an integer number for discrete action space.
- num_res_blocks (:obj:`int`): The number of res blocks in AlphaZero model.
- in_channels (:obj:`int`): The channels of input, if None, then in_channels = num_channels.
- num_channels (:obj:`int`): The channels of hidden states.
- value_head_channels (:obj:`int`): The channels of value head.
- policy_head_channels (:obj:`int`): The channels of policy head.
- fc_value_layers (:obj:`SequenceType`): The number of hidden layers used in value head (MLP head).
- fc_policy_layers (:obj:`SequenceType`): The number of hidden layers used in policy head (MLP head).
- output_support_size (:obj:`int`): The size of categorical value output.
- flatten_output_size_for_value_head (:obj:`int`): The size of flatten hidden states, i.e. the input size \
of the value head.
- flatten_output_size_for_policy_head (:obj:`int`): The size of flatten hidden states, i.e. the input size \
of the policy head.
- last_linear_layer_init_zero (:obj:`bool`): Whether to use zero initializations for the last layer of \
value/policy mlp, default sets it to True.
- activation (:obj:`Optional[nn.Module]`): Activation function used in network, which often use in-place \
operation to speedup, e.g. ReLU(inplace=True).
"""
super().__init__()
self.continuous_action_space = continuous_action_space
self.flatten_output_size_for_value_head = flatten_output_size_for_value_head
self.flatten_output_size_for_policy_head = flatten_output_size_for_policy_head
self.norm_type = norm_type
self.sigma_type = sigma_type
self.fixed_sigma_value = fixed_sigma_value
self.bound_type = bound_type
self.activation = activation
self.resblocks = nn.ModuleList(
[
ResBlock(in_channels=num_channels, activation=activation, norm_type='BN', res_type='basic', bias=False)
for _ in range(num_res_blocks)
]
)
self.conv1x1_value = nn.Conv2d(num_channels, value_head_channels, 1)
self.conv1x1_policy = nn.Conv2d(num_channels, policy_head_channels, 1)
self.norm_value = nn.BatchNorm2d(value_head_channels)
self.norm_policy = nn.BatchNorm2d(policy_head_channels)
self.flatten_output_size_for_value_head = flatten_output_size_for_value_head
self.flatten_output_size_for_policy_head = flatten_output_size_for_policy_head
self.fc_value_head = MLP(
in_channels=self.flatten_output_size_for_value_head,
hidden_channels=fc_value_layers[0],
out_channels=output_support_size,
layer_num=len(fc_value_layers) + 1,
activation=activation,
norm_type='LN',
output_activation=False,
output_norm=False,
last_linear_layer_init_zero=last_linear_layer_init_zero
)
# sampled related core code
if self.continuous_action_space:
self.fc_policy_head = ReparameterizationHead(
input_size=self.flatten_output_size_for_policy_head,
output_size=action_space_size,
layer_num=len(fc_policy_layers) + 1,
sigma_type=self.sigma_type,
fixed_sigma_value=self.fixed_sigma_value,
activation=nn.ReLU(),
norm_type=None,
bound_type=self.bound_type
)
else:
self.fc_policy_head = MLP(
in_channels=self.flatten_output_size_for_policy_head,
hidden_channels=fc_policy_layers[0],
out_channels=action_space_size,
layer_num=len(fc_policy_layers) + 1,
activation=activation,
norm_type='LN',
output_activation=False,
output_norm=False,
last_linear_layer_init_zero=last_linear_layer_init_zero
)
self.activation = activation
def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Overview:
Use the hidden state to predict the value and policy.
Arguments:
- x (:obj:`torch.Tensor`): The hidden state.
Returns:
- outputs (:obj:`Tuple[torch.Tensor, torch.Tensor]`): The value and policy.
Shapes:
- x (:obj:`torch.Tensor`): :math:`(B, C, H, W)`, where B is batch size, C is channel, H is \
the height of the encoding state, W is width of the encoding state.
- logit (:obj:`torch.Tensor`): :math:`(B, N)`, where B is batch size, N is action space size.
- value (:obj:`torch.Tensor`): :math:`(B, 1)`, where B is batch size.
"""
for block in self.resblocks:
x = block(x)
value = self.conv1x1_value(x)
value = self.norm_value(value)
value = self.activation(value)
policy = self.conv1x1_policy(x)
policy = self.norm_policy(policy)
policy = self.activation(policy)
value = value.reshape(-1, self.flatten_output_size_for_value_head)
policy = policy.reshape(-1, self.flatten_output_size_for_policy_head)
value = self.fc_value_head(value)
# sampled related core code
policy = self.fc_policy_head(policy)
if self.continuous_action_space:
policy = torch.cat([policy['mu'], policy['sigma']], dim=-1)
return policy, value
|